Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.12.271

Microorganism lipid droplets and biofuel development  

Liu, Yingmei (Marine College, Shandong University at Weihai)
Zhang, Congyan (National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences)
Shen, Xipeng (National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences)
Zhang, Xuelin (Capital University of Physical Education and Sports)
Cichello, Simon (School of Life Sciences, La Trobe University)
Guan, Hongbin (Marine College, Shandong University at Weihai)
Liu, Pingsheng (National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences)
Publication Information
BMB Reports / v.46, no.12, 2013 , pp. 575-581 More about this Journal
Abstract
Lipid droplet (LD) is a cellular organelle that stores neutral lipids as a source of energy and carbon. However, recent research has emerged that the organelle is involved in lipid synthesis, transportation, and metabolism, as well as mediating cellular protein storage and degradation. With the exception of multi-cellular organisms, some unicellular microorganisms have been observed to contain LDs. The organelle has been isolated and characterized from numerous organisms. Triacylglycerol (TAG) accumulation in LDs can be in excess of 50% of the dry weight in some microorganisms, and a maximum of 87% in some instances. These microorganisms include eukaryotes such as yeast and green algae as well as prokaryotes such as bacteria. Some organisms obtain carbon from $CO_2$ via photosynthesis, while the majority utilizes carbon from various types of biomass. Therefore, high TAG content generated by utilizing waste or cheap biomass, coupled with an efficient conversion rate, present these organisms as bio-tech 'factories' to produce biodiesel. This review summarizes LD research in these organisms and provides useful information for further LD biological research and microorganism biodiesel development.
Keywords
Biofuel; Lipid droplets; Microorganism; Proteomics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Murphy, D. J. (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid. Res. 40, 325-438.   DOI   ScienceOn
2 Martin, S. and Parton, R. G. (2006) Lipid droplets: a unified view of a dynamic organelle. Nat. Rev. Mol. Cell. Biol. 7, 373-378.   DOI   ScienceOn
3 Thiam, A. R., Farese, R. V., Jr. and Walther, T. C. (2013) The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell. Biol. 14, 775-786.   DOI   ScienceOn
4 Farese, R. V., Jr. and Walther, T. C. (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139, 855-860.   DOI   ScienceOn
5 Yang, L., Ding, Y., Chen, Y., Zhang, S., Huo, C., Wang, Y., Yu, J., Zhang, P., Na, H., Zhang, H., Ma, Y. and Liu, P. (2012) The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J. Lipid. Res. 53, 1245-1253.   DOI
6 Greenberg, A. S., Egan, J. J., Wek, S. A., Garty, N. B., Blanchette-Mackie, E. J. and Londos, C. (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J. Biol. Chem. 266, 11341-11346.
7 Jiang, H. P. and Serrero, G. (1992) Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein. Proc. Natl. Acad. Sci. U. S. A. 89, 7856-7860.   DOI   ScienceOn
8 Brasaemle, D. L., Barber, T., Wolins, N. E., Serrero, G., Blanchette-Mackie, E. J. and Londos, C. (1997) Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J. Lipid. Res. 38, 2249-2263.
9 Wolins, N. E., Rubin, B. and Brasaemle, D. L. (2001) TIP47 associates with lipid droplets. J. Biol. Chem. 276, 5101-5108.   DOI   ScienceOn
10 Wolins, N. E., Skinner, J. R., Schoenfish, M. J., Tzekov, A., Bensch, K. G. and Bickel, P. E. (2003) Adipocyte protein S3-12 coats nascent lipid droplets. J. Biol. Chem. 278, 37713-37721.   DOI   ScienceOn
11 Wolins, N. E., Quaynor, B. K., Skinner, J. R., Tzekov, A., Croce, M. A., Gropler, M. C., Varma, V., Yao-Borengasser, A., Rasouli, N., Kern, P. A., Finck, B. N. and Bickel, P. E. (2006) OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 55, 3418-3428.   DOI   ScienceOn
12 Miura, S., Gan, J. W., Brzostowski, J., Parisi, M. J., Schultz, C. J., Londos, C., Oliver, B. and Kimmel, A. R. (2002) Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J. Biol. Chem. 277, 32253-32257.   DOI   ScienceOn
13 Kimmel, A. R., Brasaemle, D. L., McAndrews-Hill, M., Sztalryd, C. and Londos, C. (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J. Lipid. Res. 51, 468-471.   DOI   ScienceOn
14 Martin, S., Driessen, K., Nixon, S. J., Zerial, M. and Parton, R. G. (2005) Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J. Biol. Chem. 280, 42325-42335.   DOI   ScienceOn
15 Welte, M. A., Gross, S. P., Postner, M., Block, S. M. and Wieschaus, E. F. (1998) Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92, 547-557.   DOI   ScienceOn
16 Liu, P., Ying, Y., Zhao, Y., Mundy, D. I., Zhu, M. and Anderson, R. G. (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279, 3787-3792.   DOI
17 Liu, P., Bartz, R., Zehmer, J. K., Ying, Y. S., Zhu, M., Serrero, G. and Anderson, R. G. (2007) Rab-regulated interaction of early endosomes with lipid droplets. Bba-Mol. Cell. Res. 1773, 784-793.
18 Ozeki, S., Cheng, J., Tauchi-Sato, K., Hatano, N., Taniguchi, H. and Fujimoto, T. (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J. Cell. Sci. 118, 2601-2611.   DOI   ScienceOn
19 Gong, J., Sun, Z., Wu, L., Xu, W., Schieber, N., Xu, D., Shui, G., Yang, H., Parton, R. G. and Li, P. (2011) Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J. Cell. Biol. 195, 953-963.   DOI
20 Bartz, R., Li, W. H., Venables, B., Zehmer, J. K., Roth, M. R., Welti, R., Anderson, R. G., Liu, P. and Chapman, K. D. (2007) Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid. Res. 48, 837-847.   DOI   ScienceOn
21 Katavic, V., Agrawal, G. K., Hajduch, M., Harris, S. L. and Thelen, J. J. (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6, 4586-4598.   DOI   ScienceOn
22 Yatsu, L. Y., Jacks, T. J. and Hensarling, T. P. (1971) Isolation of spherosomes (oleosomes) from onion, cabbage, and cottonseed tissues. Plant. Physiol. 48, 675-682.   DOI   ScienceOn
23 Jacks, T. J., Yatsu, L. Y. and Altschul, A. M. (1967) Isolation and characterization of peanut spherosomes. Plant. Physiol. 42, 585-597.   DOI   ScienceOn
24 Jolivet, P., Boulard, C., Bellamy, A., Larre, C., Barre, M., Rogniaux, H., d'Andrea, S., Chardot, T. and Nesi, N. (2009) Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9, 3268-3284.   DOI   ScienceOn
25 Qu, R. D. and Huang, A. H. (1990) Oleosin KD 18 on the surface of oil bodies in maize. Genomic and cDNA sequences and the deduced protein structure. J. Biol. Chem. 265, 2238-2243.
26 Chen, J. C., Tsai, C. C. and Tzen, J. T. (1999) Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant. Cell. Physiol. 40, 1079-1086.   DOI   ScienceOn
27 Au, D. M., Kang, A. S. and Murphy, D. J. (1989) An immunologically related family of apolipoproteins associated with triacylglycerol storage in the Cruciferae. Arch. Biochem. Biophys. 273, 516-526.   DOI   ScienceOn
28 Murphy, D. J. (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249, 541-585.   DOI   ScienceOn
29 Fei, W., Shui, G., Gaeta, B., Du, X., Kuerschner, L., Li, P., Brown, A. J., Wenk, M. R., Parton, R. G. and Yang, H. (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J. Cell. Biol. 180, 473-482.   DOI   ScienceOn
30 Binns, D., Januszewski, T., Chen, Y., Hill, J., Markin, V. S., Zhao, Y., Gilpin, C., Chapman, K. D., Anderson, R. G. and Goodman, J. M. (2006) An intimate collaboration between peroxisomes and lipid bodies. J. Cell. Biol. 173, 719-731.   DOI   ScienceOn
31 Grillitsch, K., Connerth, M., Kofeler, H., Arrey, T. N., Rietschel, B., Wagner, B., Karas, M. and Daum, G. (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim. Biophys. Acta. 12, 26.
32 Nguyen, H. M., Baudet, M., Cuine, S., Adriano, J. M., Barthe, D., Billon, E., Bruley, C., Beisson, F., Peltier, G., Ferro, M. and Li-Beisson, Y. (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11, 4266-4273.   DOI   ScienceOn
33 Peled, E., Leu, S., Zarka, A., Weiss, M., Pick, U., Khozin-Goldberg, I. and Boussiba, S. (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 46, 851-861.   DOI   ScienceOn
34 Low, K. L., Shui, G., Natter, K., Yeo, W. K., Kohlwein, S. D., Dick, T., Rao, S. P. and Wenk, M. R. (2010) Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette-Guerin. J. Biol. Chem. 285, 21662-21670.   DOI   ScienceOn
35 McLaughlin, S. B. and Adams Kszos, L. (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy 28, 515-535.   DOI   ScienceOn
36 Kalscheuer, R., Waltermann, M., Alvarez, M. and Steinbuchel, A. (2001) Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins. Arch. Microbiol. 177, 20-28.   DOI
37 Ding, Y., Yang, L., Zhang, S., Wang, Y., Du, Y., Pu, J., Peng, G., Chen, Y., Zhang, H., Yu, J., Hang, H., Wu, P., Yang, F., Yang, H., Steinbuchel, A. and Liu, P. (2012) Identification of the major functional proteins of prokaryotic lipid droplets. J. Lipid. Res. 53, 399-411.   DOI
38 Miao, X. and Wu, Q. (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 110, 85-93.   DOI   ScienceOn
39 McKendry, P. (2002) Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37-46.   DOI   ScienceOn
40 Fargione, J., Hill, J., Tilman, D., Polasky, S. and Hawthorne, P. (2008) Land Clearing and the Biofuel Carbon Debt. Science 319, 1235-1238.   DOI   ScienceOn
41 Greenwell, H. C., Laurens, L. M., Shields, R. J., Lovitt, R. W. and Flynn, K. J. (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J. R. Soc. Interface 7, 703-726.   DOI
42 Alvarez, H. M. and Steinbuchel, A. (2002) Triacylglycerols in prokaryotic microorganisms. Appl. Microbiol. Biotechnol. 60, 367-376.   DOI
43 Leber, R., Zinser, E., Zellnig, G., Paltauf, F. and Daum, G. (1994) Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10, 1421-1428.   DOI   ScienceOn
44 Alvarez, H. M., Mayer, F., Fabritius, D. and Steinbuchel, A. (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch. Microbiol. 165, 377-386.   DOI
45 Chen, Y., Ding, Y., Yang, L., Yu, J., Liu, G., Wang, X., Zhang, S., Yu, D., Song, L., Zhang, H., Zhang, C., Huo, L., Huo, C., Wang, Y., Du, Y., Zhang, H., Zhang, P., Na, H., Xu, S., Zhu, Y., Xie, Z., He, T., Zhang, Y., Wang, G., Fan, Z., Yang, F., Liu, H., Wang, X., Zhang, X., Zhang, M. Q., Li, Y., Steinbuchel, A., Fujimoto, T., Cichello, S., Yu, J. and Liu, P. (2013) Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res. 22 [Epub ahead of print].
46 Grillitsch, K., Connerth, M., Kofeler, H., Arrey, T. N., Rietschel, B., Wagner, B., Karas, M. and Daum, G. (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim. Biophys. Acta. 1811, 1165-1176.   DOI   ScienceOn
47 Athenstaedt, K., Zweytick, D., Jandrositz, A., Kohlwein, S. D. and Daum, G. (1999) Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J. Bacteriol. 181, 6441-6448.
48 Binns, D., Januszewski, T., Chen, Y., Hill, J., Markin, V. S., Zhao, Y., Gilpin, C., Chapman, K. D., Anderson, R. G. and Goodman, J. M. (2006) An intimate collaboration between peroxisomes and lipid bodies. J. Cell. Biol. 173, 719-731.   DOI   ScienceOn
49 Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C. and Nicaud, J. M. (2009) Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid Res. 48, 375-387.   DOI   ScienceOn
50 Athenstaedt, K., Jolivet, P., Boulard, C., Zivy, M., Negroni, L., Nicaud, J. M. and Chardot, T. (2006) Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics. 6, 1450-1459.   DOI   ScienceOn
51 Ivashov, V. A., Grillitsch, K., Koefeler, H., Leitner, E., Baeumlisberger, D., Karas, M. and Daum, G. (2013) Lipidome and proteome of lipid droplets from the methylotrophic yeast Pichia pastoris. Biochim. Biophys. Acta. 1831, 282-290.   DOI   ScienceOn
52 Liu, H., Zhao, X., Wang, F., Li, Y., Jiang, X., Ye, M., Zhao, Z. K. and Zou, H. (2009) Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation. Yeast. 26, 553-566.   DOI   ScienceOn
53 Ytterberg, A. J., Peltier, J. B. and van Wijk, K. J. (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant. Physiol. 140, 984-997.   DOI   ScienceOn
54 Ramanan, R., Kim, B.-H., Cho, D.-H., Ko, S.-R., Oh, H.-M. and Kim, H.-S. (2013) Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii. FEBS Lett. 587, 370-377.   DOI   ScienceOn
55 Moellering, E. R. and Benning, C. (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell 9, 97-106.   DOI
56 Davidi, L., Katz, A. and Pick, U. (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta 236, 19-33.   DOI
57 Huang, N. L., Huang, M. D., Chen, T. L. and Huang, A. H. (2013) Oleosin of subcellular lipid droplets evolved in green algae. Plant. Physiol. 161, 1862-1874.   DOI   ScienceOn
58 Waltermann, M. and Steinbuchel, A. (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J. Bacteriol. 187, 3607-3619.   DOI   ScienceOn
59 Wang, Z. T., Ullrich, N., Joo, S., Waffenschmidt, S. and Goodenough, U. (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 8, 1856-1868.
60 James, G. O., Hocart, C. H., Hillier, W., Chen, H., Kordbacheh, F., Price, G. D. and Djordjevic, M. A. (2011) Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour. Technol. 102, 3343-3351.   DOI   ScienceOn
61 Low, K. L., Shui, G., Natter, K., Yeo, W. K., Kohlwein, S. D., Dick, T., Rao, S. P. and Wenk, M. R. (2010) Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette-Guerin. J. Biol. Chem. 285, 21662-21670.   DOI   ScienceOn
62 Kalscheuer, R., Waltermann, M., Alvarez, M. and Steinbuchel, A. (2001) Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins. Arch. Microbiol. 177, 20-28.   DOI
63 McLeod, M. P., Warren, R. L., Hsiao, W. W., Araki, N., Myhre, M., Fernandes, C., Miyazawa, D., Wong, W., Lillquist, A. L., Wang, D., Dosanjh, M., Hara, H., Petrescu, A., Morin, R. D., Yang, G., Stott, J. M., Schein, J. E., Shin, H., Smailus, D., Siddiqui, A. S., Marra, M. A., Jones, S. J., Holt, R., Brinkman, F. S., Miyauchi, K., Fukuda, M., Davies, J. E., Mohn, W. W. and Eltis, L. D. (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. U. S. A. 103, 15582-15587.   DOI   ScienceOn
64 Guarnieri, M. T., Nag, A., Smolinski, S. L., Darzins, A., Seibert, M. and Pienkos, P. T. (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PloS One. 6, e25851.   DOI
65 Hoiczyk, E., Ring, M. W., McHugh, C. A., Schwar, G., Bode, E., Krug, D., Altmeyer, M. O., Lu, J. Z. and Bode, H. B. (2009) Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus. Mol. Microbiol. 74, 497-517.   DOI   ScienceOn
66 Nojima, D., Yoshino, T., Maeda, Y., Tanaka, M., Nemoto, M. and Tanaka, T. (2013) Proteomics analysis of oil body-associated proteins in the oleaginous diatom. J. Proteome. Res. 12, 5293-5301.   DOI   ScienceOn
67 Vieler, A., Brubaker, S. B., Vick, B. and Benning, C. (2012) A lipid droplet protein of Nannochloropsis with functions partially analogous to plant oleosins. Plant. physiol. 158, 1562-1569.   DOI
68 Guarnieri, M. T., Nag, A., Yang, S. and Pienkos, P. T. (2013) Proteomic analysis of Chlorella vulgaris: Potential targets for enhanced lipid accumulation. J. Proteomics. 93, 245-253.   DOI   ScienceOn
69 Fei, W., Zhong, L., Ta, M. T., Shui, G., Wenk, M. R. and Yang, H. (2011) The size and phospholipid composition of lipid droplets can influence their proteome. Biochem. Biophys. Res. Commun. 415, 455-462.   DOI   ScienceOn
70 Leber, R., Landl, K., Zinser, E., Ahorn, H., Spok, A., Kohlwein, S. D., Turnowsky, F. and Daum, G. (1998) Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol. Biol. Cell. 9, 375-386.   DOI   ScienceOn
71 Holder, J. W., Ulrich, J. C., DeBono, A. C., Godfrey, P. A., Desjardins, C. A., Zucker, J., Zeng, Q., Leach, A. L., Ghiviriga, I., Dancel, C., Abeel, T., Gevers, D., Kodira, C. D., Desany, B., Affourtit, J. P., Birren, B. W. and Sinskey, A. J. (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet. 7, 8.
72 Natter, K., Leitner, P., Faschinger, A., Wolinski, H., McCraith, S., Fields, S. and Kohlwein, S. D. (2005) The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy. Mol. Cell. Proteomics. 4, 662-672.   DOI   ScienceOn
73 Noothalapati Venkata, H. N. and Shigeto, S. (2012) Stable isotope-labeled Raman imaging reveals dynamic proteome localization to lipid droplets in single fission yeast cells. Chem. Biol. 19, 1373-1380.   DOI   ScienceOn
74 Bostrom, P., Andersson, L., Rutberg, M., Perman, J., Lidberg, U., Johansson, B. R., Fernandez-Rodriguez, J., Ericson, J., Nilsson, T., Boren, J. and Olofsson, S. O. (2007) SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat. Cell. Biol. 9, 1286-1293.   DOI   ScienceOn
75 Szymanski, K. M., Binns, D., Bartz, R., Grishin, N. V., Li, W. P., Agarwal, A. K., Garg, A., Anderson, R. G. and Goodman, J. M. (2007) The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl. Acad. Sci. U. S. A. 104, 20890-20895.   DOI   ScienceOn