Effects of Polycyclic Aromatic Hydrocarbons on DNA Damage and Plasma Protein Expression in Mouse

  • Oh, Sang-Nam (Medical Science Research Center, Korea University) ;
  • Oh, Eun-Ha (Medical Science Research Center, Korea University) ;
  • Im, Ho-Sub (School of Public Health, Korea University) ;
  • Jo, Gyu-Chan (Graduate School of Medicine, Korea University) ;
  • Sul, Dong-Geun (Medical Science Research Center, Korea University) ;
  • Kim, Young-Whan (Department of Environmental Health, College of Health Sciences, Korea University) ;
  • Lee, Eun-Il (Medical Science Research Center, Korea University)
  • 발행 : 2005.03.31

초록

Polycyclic aromatic hydrocarbons (PAHs) are an important class of environmentally prevalent xenobiotics that exert complex effects on the biological system and characterized as probably carcinogenic materials. Single cell gel electrophoresis assays were performed in order to evaluate DNA damage occurring in the T-and B lymphocytes, spleens (T/B-cell), bone marrow, and livers of mouse exposed to mixture of PAHs (Benzo(a)pyrene, Benzo(e)pyrene, Fluoranthene, Pyrene) at dose of 400, 800, or 1600 mg/kg body weight for 2 days. DNA damage of the cells purified from mice was increased in dose dependent manner. In the blood cells and organs, DNA damage was also discovered to vary directly with PAHs. Especially T-cells had been damaged more than B-cell. Plasma proteomes were separated by 2-dimensional electrophoresis with pH 4-7 ranges of IPG Dry strips and many proteins showed significant up-and -down expressions with the dose dependent manner. Of these, significant 4 spots were identified using matrix-assisted laser desorption/ionization-time of fight (MALDI-TOF) mass spectrometry. Identified proteins were related to energy metabolism and signal transduction.

키워드

참고문헌

  1. The International Agency for Research on Cancer (IARC), IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans; polynuclear aromatic compounds, part 1, chemical, environmental and experimental data, Vol 32 (1986)
  2. Melendez-Colon, V.J., Luch, A., Seidel, A. & Baird, W.M. Cancer initiation by polycyclic aromatic hydrocarbons results from formation of stable DNA adducts rather than apurinic sites. Carcinogen. 20, 1885 -1891 (1999) https://doi.org/10.1093/carcin/20.10.1885
  3. Melendez-Colon, V.J., Luch, A., Seidel, A. & Baird, W.M. Formation of stable DNA adducts and apurinic sites upon metabolic activation of bay and fjord region polycyclic aromatic hydrocarbons in human cell cultures. Chem. Res. Toxicol. 13, 10-17 (2000) https://doi.org/10.1021/tx9802724
  4. Rigdon, R. & Neal, J. Relationship of leukemia to lung and stomach tumors in mice fed benzo(a) pyrene. Proc. Soc. Exp. Biol. 130, 146-148 (1969)
  5. Mann, K.K., Matulka, R.A., Hahn, M.E., Trombino, A.F., Lawrence, B.P., Kerkvliet, N.I. & Sherr, D.H. The role of polycyclic aromatic hydrocarbon metabolism in dimethylbenz[a]anthracene-induced pre-B lymphocyte apoptosis. Toxicol. Appl. Phamacol. 161, 10-22 (1999). https://doi.org/10.1006/taap.1999.8778
  6. Thirman, M., Albrecht, J., Krueger, M., Erickson, R., Cherwitz, D., Park S., Gelboin, H. & Holzman. J. Induction of cytochrome CYPIA1 and formation of toxic metabolites of benzo[a]pyrene by rat aorta: a possible role in atherogenesis. Proc. Natl. Acad. Sci. USA. 91, 5397-5401 (1994). https://doi.org/10.1073/pnas.91.12.5397
  7. Kress, S. & Greenlee, W. Cell-specific regulation of human CYP1A1 and CYP1B1 genes. Cancer Res. 57, 1264-1269 (1997)
  8. Andrews, L.S., Snyder, R Amdnr, M.O., Doull, J. & Klaassen, C.D. (Eds.), Toxic effects of solvents and vapors. Toxicology : The basic science of poisons. 681-722 (1992)
  9. Andreoli, C., Leopardi, P. & Crebelli, R. Detection of DNA damage in human lymphocyte by alkaline single cell gel electrophoresis after exposure to benzene or benzene metabolites. Mutat. Res. 377, 95-104 (1997) https://doi.org/10.1016/S0027-5107(97)00065-1
  10. Kassie, F., Pazefall, W. & Knasmüler, S. Single cell gel electrophoresis assay : a new technique for human biomonitoring studies. Mutat. Res. 463, 13-31 (2000) https://doi.org/10.1016/S1383-5742(00)00041-7
  11. Meller, P., Knudsen, L.E. & Wallin, H. The comet assay, a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiology, Biomarker & Preventions 9, 1005-1015 (2000)
  12. Sasaki, E., Nishidate, F. Izumiyama, N. Matsusaka. & S. Tsuda. Simple detection of chemical mutagens by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs (liver, lung, spleen, kidney, and bone marrow). Mutat. Res. 391, 215-231 (1997) https://doi.org/10.1016/S1383-5718(97)00073-9
  13. Miyamae, K. Zaizen, K. Ohara, Y. Mine. & Y.F. Sasaki. Detection of DNA lesions induced by chemical mutagens by the single cell gel electrophoresis (Comet) assay. 1. Relationship between the onset of DNA damage and the cgaracteristics of mutagens. Mutat. Res. 393, 99-106 (1997) https://doi.org/10.1016/S1383-5718(97)00090-9
  14. McNamee, J.R.N. McLean, C.L. Ferrarotto. & P.V. Bellier. Comet assay: rapid processing of multiple samples. Mutat. Res. 466, 63-69 (2000). https://doi.org/10.1016/S1383-5718(00)00004-8
  15. Farris, G.M., Robinson, S.N., Wong, B.A., Wong, V.A., Hahn, W.P. & Shah, R. Effects of benzene on splenic, thymic and femoral lymphocytes in mice. Toxicology. 118, 137-148 (1997) https://doi.org/10.1016/S0300-483X(96)03606-2
  16. Moller, A., Soldan, M., Völker, U. & Maser, E. Monitoring daunorubicin-induced alterations in protein expression in pancreas carcinoma cells by two-dimensional gel electrophoresis. Toxicology. 160, 129- 138 (2001) https://doi.org/10.1016/S0300-483X(00)00443-1
  17. Ramagli, L.S. in: Link, A.J. (Ed.) Quantifying Protein in 2-D PAGE Solubilization Buffers in 2-D Proteome Analysis Protocols Humana Totowa, NJ, USA, pp. 99-103 (1999)
  18. Blum, H., Beier, H. & Gross, H.J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 8, 93-99 (1987) https://doi.org/10.1002/elps.1150080203
  19. Sechi, S. & Chait, B.T. Modification of Cysteine Residues by Alkylation. A Tool in Peptide Mapping and Protein Identification. Anal. Chem. 70, 5150- 5158 (1998) https://doi.org/10.1021/ac9806005
  20. Quadroni, M. & James, P. Proteomics and automation. Electrophoresis. 20, 664-677 (1999) https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<664::AID-ELPS664>3.0.CO;2-A
  21. Wu, C-H., Hsieh, C-L., Song, T-Y. & Yen, G-C. Inhibitory effects of Cassia tora L. on benzo[a]pyrenemediated DNA damage toward HepG2 cells. J. Agric. Food Chem, 49, 2579-2586 (2001). https://doi.org/10.1021/jf001341z
  22. Sul, D., Oh, E., Im, H., Yang. M. & Lee, E. DNA damage in T- and B-lymphocytes and granulocytes in emission inspection and incineration workers exposed to polycyclic aromatic hydrocarbons. Mutat. Res. 538, 109-19 (2003) https://doi.org/10.1016/S1383-5718(03)00095-0
  23. Halliwell, B. & Gutteridge, M.C. Free radicals in biology and medicine: B. Halliwell, M.C. Gutteridge (Ed.), Oxford Science publications (1999)
  24. Marczynski, H.P. Rihs, B. Rossbach, J. Holzer, J. Angerer, M. Scherenberg, G. Hoffmann, T. Bruning & M. Wilhelm, Analysis of 8-oxo-7,8-dihydro-2′- deoxyguanosine and DNA strand breaks in white blood cells of occupationally exposed workers: comparison with ambient monitoring, urinary metabolites and enzyme polymorphisms. Carcinogenesis. 23, 273-281 (2002) https://doi.org/10.1093/carcin/23.2.273
  25. Binkova, J. et al. Biomarker studies in northern Bohemia. Environ. Health Perspect. 104, 591-597 (1996) https://doi.org/10.2307/3432828
  26. Sram, K. Podrazilova, J. Dejmek, G. Mrackova & T. Pilcik. Single cell gel electrophoresis assay: sensitivity of peripheral white blood cells in human population studies. Mutagenesis. 13, 99-103 (1998) https://doi.org/10.1093/mutage/13.1.99