• 제목/요약/키워드: Protein Kinase C(PKC)

검색결과 302건 처리시간 0.024초

Protein Kinase C-$\beta$ Is Induced In Ionizing Irradiation Induced Pigmentation

  • Nelly Rubeiz;Park, Dee-Young;Barbara A. Gilchrest
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.209-212
    • /
    • 2002
  • Cutaneous hyperpigmentation is a well-known consequence of both acute and chronic X-irradiation, although the molecular mechanisms involved are not well understood. Recently, protein kinase C-$\beta$ (PKC-$\beta$) was shown to activate tyrosinase, a key and the rate-limiting enzyme in melanogenesis [1]. In this study, we have investigated its role in mediating ionizing radiation-induced pigmentation by exposing cultured human melanocytes to X-irradiation. Increased tyrosinase activity after the 4 Gys exposure was observed within 48 hrs and total melanin content doubled after 7 days. Interestingly, tyrosinase mRNA level was not affected by X-irradiation. However, there was a 2-3 fold increase in PKC-$\beta$ mRNA after 48 hours of irradiation, coinciding with the increase in tyrosinase activity. This induction was not due to non-specific heat generated during the irradiation because when melanocytes were incubated at 4$0^{\circ}C$, there was no induction of PKC-$\beta$ mRNA. Taken together, these data suggest that X-irradiation induces cutaneous hyperpigmentation, at least in part, by up-regulating the level of PKC-$\beta$.

  • PDF

Signal Transduction of the Protective Effect of Insulin Like Growth Factor-1 on Adriamycin-Induced Apoptosis in Cardiac Muscle Cells

  • Chae, Han-Jung;Kim, Hyung-Ryong;Bae, Jee-hyeon;Chae, Soo-Uk;Ha, Ki-Chan;Chae, Soo-Wan
    • Archives of Pharmacal Research
    • /
    • 제27권3호
    • /
    • pp.324-333
    • /
    • 2004
  • To determine whether Insulin-like growth factor (IGF-I) treatment represents a potential means of enhancing the survival of cardiac muscle cells from adriamycin (ADR)-induced cell death, the present study examined the ability of IGF-I to prevent cell death. The study was performed utilising the embryonic, rat, cardiac muscle cell line, H9C2. Incubating cardiac muscle cells in the presence of adriamycin increased cell death, as determined by MTT assay and annexin V-positive cell number. The addition of 100 ng/mL IGF-I, in the presence of adriamycin, decreased apoptosis. The effect of IGF-I on phosphorylation of PI, a substrate of phosphatidylinositol 3-kinase (PI 3-kinase) or protein kinase B (AKT), was also examined in H9C2 cardiac muscle cells. IGF-I increased the phosphorylation of ERK 1 and 2 and $PKC{\;}{\zeta}{\;}kinase$. The use of inhibitors of PI 3-kinase (LY 294002), in the cell death assay, demonstrated partial abrogation of the protective effect of IGF-I. The MEK1 inhibitor-PD098059 and the PKC inhibitor-chelerythrine exhibited no effect on IGF-1-induced cell protection. In the regulatory subunit of PI3K-p85- dominant, negative plasmid-transfected cells, the IGF-1-induced protective effect was reversed. This data demonstrates that IGF-I protects cardiac muscle cells from ADR-induced cell death. Although IGF-I activates several signaling pathways that contribute to its protective effect in other cell types, only activation of PI 3-kinase contributes to this effect in H9C2 cardiac muscle cells.

신호전달 경로의 저해제를 이용한 혈관 내피세포의 비정상적인 증식 기전에 대한 연구 (A Study for the Mechanism of Abnormal Proliferation in Vascular Endothelial Cells using Inhibitors to the Signal Transduction Pathway)

  • 배용찬;박숙영;남수봉;허재영;강영석
    • Archives of Plastic Surgery
    • /
    • 제33권1호
    • /
    • pp.5-12
    • /
    • 2006
  • Protein tyrosine kinase(PTK), protein kinase C(PKC), oxidase, as a mediator, take a significant role in signal transduction pathway of angiogenesis. The authors utilized the inhibitors, targeting the formation of three co-enzyme in signal transduction pathway in order to quantify the suppression of abnormal vascular endothelial cell proliferation induced by DMH, to compare the level suppression in each up-regulated growth factors, CTGF, CYR61, $ITG{\beta}1$, FHL2, and to identify the relationship between abnormal cell proliferation and signal transduction pathway. Five groups were established; Control group, Group of DMH, Group of DMH-mixed Herbimycin, inhibitor of protein tyrosine kinase, Group of DMH-mixed Calphostin C, inhibitor of protein kinase C, Group Of Dmh-Mixed 10U Catalase, Inhibitor Of oxidase. The rise of vascular endothelial cell was compared by MTT assay, and four growth factors were analysed with RT-PCR method, at pre-administration, 4, 8, 12, and 24 hours after administration. In comparison of abnormal proliferation of vascular endothelial cell induced by DMH, suppression was noticed in Herbimycin and Calphostin C group, and Calphostin C group revealed higher suppression effect. Nevertheless, Catalase group did not have any suppression. In manifestation of four growth factors, Herbimycin and Calphostin C group presented similar manifestation with control group, except in $ITG{\beta}$. Catalse group had similar manifestation with DMH group in all four growth factors. Abnormal proliferation of vascular endothelial cell induced by DMH have a direct relationship with PTK and PKC, more specifically to PKC. Oxidase was confirmed not to have any relevance.

Protein kinase C beta II upregulates intercellular adhesion molecule-1 via mitochondrial activation in cultured endothelial cells

  • Joo, Hee Kyoung;Lee, Yu Ran;Choi, Sunga;Park, Myoung Soo;Kang, Gun;Kim, Cuk-Seong;Jeon, Byeong Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권4호
    • /
    • pp.377-384
    • /
    • 2017
  • Activation of protein kinase C (PKC) is closely linked with endothelial dysfunction. However, the effect of $PKC{\beta}II$ on endothelial dysfunction has not been characterized in cultured endothelial cells. Here, using adenoviral $PKC{\beta}II$ gene transfer and pharmacological inhibitors, the role of $PKC{\beta}II$ on endothelial dysfucntion was investigated in cultured endothelial cells. Phorbol 12-myristate 13-acetate (PMA) increased reactive oxygen species (ROS), p66shc phosphorylation, intracellular adhesion molecule-1, and monocyte adhesion, which were inhibited by $PKC{\beta}i$ (10 nM), a selective inhibitor of $PKC{\beta}II$. PMA increased the phosphorylation of CREB and manganese superoxide dismutase (MnSOD), which were also inhibited by $PKC{\beta}i$. Gene silencing of CREB inhibited PMA-induced MnSOD expression, suggesting that CREB plays a key role in MnSOD expression. Gene silencing of $PKC{\beta}II$ inhibited PMA-induced mitochondrial ROS, MnSOD, and ICAM-1 expression. In contrast, overexpression of $PKC{\beta}II$ using adenoviral $PKC{\beta}II$ increased mitochondrial ROS, MnSOD, ICAM-1, and p66shc phosphorylation in cultured endothelial cells. Finally, $PKC{\beta}II$-induced ICAM-1 expression was inhibited by Mito-TEMPO, a mitochondrial ROS scavenger, suggesting the involvement of mitochondrial ROS in PKC-induced vascular inflammation. Taken together, the results suggest that $PKC{\beta}II$ plays an important role in PMA-induced endothelial dysfunction, and that the inhibition of $PKC{\beta}II$-dependent p66shc signaling acts as a therapeutic target for vascular inflammatory diseases.

Protein Kinase C Activates ATP-sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Kim, Na-Ri;Youm, Jae-Boum;Joo, Hyun;Kim, Hyung-Kyu;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.187-193
    • /
    • 2005
  • Several signal transduction pathways have been implicated in ischemic preconditioning induced by the activation of ATP-sensitive $K^+$ $(K_{ATP})$ channels. We examined whether protein kinase C (PKC) modulated the activity of $K_{ATP}$ channels by recording $K_{ATP}$ channel currents in rabbit ventricular myocytes using patch-clamp technique and found that phorbol 12,13-didecanoate (PDD) enhanced pinacidil-induced $K_{ATP}$ channel activity in the cell-attached configuration; and this effect was prevented by bisindolylmaleimide (BIM). $K_{ATP}$ channel activity was not increased by $4{\alpha}-PDD$. In excised insideout patches, PKC stimulated $K_{ATP}$ channels in the presence of 1 mM ATP, and this effect was abolished in the presence of BIM. Heat-inactivated PKC had no effect on channel activity. PKC-induced activation of $K_{ATP}$ channels was reversed by PP2A, and this effect was not detected in the presence of okadaic acid. These results suggest that PKC activates $K_{ATP}$ channels in rabbit ventricular myocytes.

C6 Glioma 세포에서 Protein Kinase C Alpha 발현 저해를 통한 송절 약침액의 이주 억제 효과 (Pinus densiflora Gnarl Inhibits Migration through Suppression of Protein Kinase C in C6 Glioma Cells)

  • 민일국;이강파;장해룡;문진영
    • Korean Journal of Acupuncture
    • /
    • 제32권2호
    • /
    • pp.51-58
    • /
    • 2015
  • Objectives : Pinus densiflora gnarl, called Song-Jeol in Korean medicine, has been used to cure inflammatory diseases such as arthritis. In the present study, we evaluated inhibitory property of Song-Jeol pharmacopuncture(SJ) on C6 glioma cell migration. Methods : To evaluate cell viability on C6 glioma cells of SJ, the viability was assessed by using Ez-cytox assay kit. The cell migration was assessed by wound-healing assay and Boyden chamber assay, respectively. LPS-induced NO productions were determined by using the Griess reagent. The expression of iNOS and protein kinase $C(PKC)-{\alpha}$ were estimated by western blotting assay. Results : In the wound-healing assay and Boyden chamber assay, SJ showed a significant inhibition on serum-induced C6 glioma cell migration. In addition, NO production was decreased by SJ through suppression of iNOS expression in LPS-stimulated C6 glioma cell. Futhermore, LPS-induced protein kinase $C(PKC)-{\alpha}$ expression was effectively inhibited by SJ. Conclusions : These results demonstrated that SJ was useful for the suppression of the C6 glioma cell migration.

SH2D4A regulates cell proliferation via the ERα/PLC-γ/PKC pathway

  • Li, Tingting;Li, Wei;Lu, Jingyu;Liu, Hong;Li, Yinghui;Zhao, Yanyan
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.516-522
    • /
    • 2009
  • SH2D4A, comprising a single SH2 domain, is a novel protein of the SH2 signaling protein family. We have previously demonstrated SH2D4A is expressed ubiquitously in various tissues and is located in the cytoplasm. In this study we investigated the function of SH2D4A in human embryonic kidney (HEK) 293 cells using interaction analysis, cell proliferation assays, and kinase activity detection. SH2D4A was found to directly bind to estrogen receptor $\alpha$ (ER$\alpha$), and prevent the recruitment of phospholipase C-$\gamma$ (PLC-$\gamma$) to ER$\alpha$. Moreover, we observed its inhibitory effects on estrogen-induced cell proliferation, involving the protein kinase C (PKC) signaling pathway. Together, these findings suggested that SH2D4A inhibited cell proliferation by suppression of the ER$\alpha$/PLC-$\gamma$/PKC signaling pathway. SH2D4A may be useful for the development of a new anti-cancer drug acting as an ER signaling modulator.

The WNT/Ca2+ pathway promotes atrial natriuretic peptide secretion by activating protein kinase C/transforming growth factor-β activated kinase 1/activating transcription factor 2 signaling in isolated beating rat atria

  • Li, Zhi-yu;Liu, Ying;Han, Zhuo-na;Li, Xiang;Wang, Yue-ying;Cui, Xun;Zhang, Ying
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.469-478
    • /
    • 2022
  • WNT signaling plays an important role in cardiac development, but abnormal activity is often associated with cardiac hypertrophy, myocardial infarction, remodeling, and heart failure. The effect of WNT signaling on regulation of atrial natriuretic peptide (ANP) secretion is unclear. Therefore, the purpose of this study was to investigate the effect of Wnt agonist 1 (Wnta1) on ANP secretion and mechanical dynamics in beating rat atria. Wnta1 treatment significantly increased atrial ANP secretion and pulse pressure; these effects were blocked by U73122, an antagonist of phospholipase C. U73122 also abolished the effects of Wnta1-mediated upregulation of protein kinase C (PKC) β and γ expression, and the PKC antagonist Go 6983 eliminated Wnta1-induced secretion of ANP. In addition, Wnta1 upregulated levels of phospho-transforming growth factor-β activated kinase 1 (p-TAK1), TAK1 banding 1 (TAB1) and phospho-activating transcription factor 2 (p-ATF2); these effects were blocked by both U73122 and Go 6983. Wnta1-induced ATF2 was abrogated by inhibition of TAK1. Furthermore, Wnta1 upregulated the expression of T cell factor (TCF) 3, TCF4, and lymphoid enhancer factor 1 (LEF1), and these effects were blocked by U73122 and Go 6983. Tak1 inhibition abolished the Wnta1-induced expression of TCF3, TCF4, and LEF1 and Wnta1-mediated ANP secretion and changes in mechanical dynamics. These results suggest that Wnta1 increased the secretion of ANP and mechanical dynamics in beating rat atria by activation of PKC-TAK1-ATF2-TCF3/LEF1 and TCF4/LEF1 signaling mainly via the WNT/Ca2+ pathway. It is also suggested that WNT-ANP signaling is implicated in cardiac physiology and pathophysiology.

Apoptosis of MCF7 Cells Treated with PKC Inhibitors and Daunorubicin

  • Park, Won-Chul;Son, Joo-Young;Chung, Sook-Hyun;An, Woon-Gun
    • Preventive Nutrition and Food Science
    • /
    • 제7권2호
    • /
    • pp.128-132
    • /
    • 2002
  • The present study was performed to observe the role of protein kinase C (PKC) inhibitors (H-7, staurosporine) and daunorubicin in the cell death process of MCF7 cells; and examined whether or not the type of induced cell death was apoptosis. The usefulness of the combined therapy of PKC inhibitors and daunorubicin to improve the adverse effect of daunorubicin was also investigated. Cell death was induced by treatment with PKC inhibitors or daunorubicin. Characteristic morphologic features of cell shrinkage, chromatic condensation, and cytoplasmic vacuolization were observed. These treatments also stimulated the cleavage of poly-(ADP-ribose) polymerase (PARP), an early event in apoptosis. With slight differences in the percentage of apoptosis-induced cells, staurosporine, H-7 and daunorubicin effectively induced apoptosis in MCF7 cells. Furthermore, combined treatment of PKC inhibitors and daunorubicin significantly drove the cells into an apoptotic state. Hence, our results revealed the possible therapeutic value of combined therapy for the prevention of drug resistance and adverse side effects.

G292 세포에서 $K^+$통로에 대한 phorbol ester의 효과 (Effect of Phorbol ester on $K^+$channel in an G292 osteoblast-like cell)

  • 김미경;박수병
    • 대한치과교정학회지
    • /
    • 제32권3호
    • /
    • pp.227-234
    • /
    • 2002
  • 본 연구는 조골세포의 특성을 가지고 있는 G292세포주를 이용하여 세포막 이온통로에 대한phorbol ester의 효과를 조사하여 protein kinase C (PCK)의 이온통로에 대한 작용기전을 밝히고자 하였다. Patch clamp 기법을 이용하여 G292 세포에서 cell-attached configuration으로 단일이온통로의 활동을 관찰하고 Phorbol 12, 13-dibutyrate (PDBu)의 효과를 관찰하였다. 안정상태 G292 세포에서 cell-attached 모드로 세포막의 단일이 온통로 활동을 관찰한 결과 45pS의 $K^+$통로가 특징 적으로 우세하였다. 유리 전극 내부에 세포내 액과 세포외 액을 사용하여 전류-전압의 관계를 조사한 결과, 세포내 액을 사용하는 경우에는 역전전압이 5.5mV이었으며 세포외액을 사용하는 경우에는 -27mV이었다. PDBu는 45pS의 이온통로를 10nM이상의 농도에서 이온통로의 열릴 확률을 증가시켰으며 PKC억제제인 staurosporine 10nM에 의하여 차단되는 특성을 보였다. PDBu는 45pS의 이온통로에 작용하여 전류-전압의 관계에서 역전전압을 음의 방향으로 이동시켰으며 동일한 막전압에서 단일이온통로의 전류 크기를 증가시켰다. G292세포에서 PDBu에 의하여 PKC가 활성화되는 것을 western blot으로 확인한 결과 PDBu 0.luM은 세포질에서 세포막으로 PKC translocation을 유의하게 증가시키는 것을 확인하였다. 이상의 결과는 G292세포에서 phorbol ester의 일종인 PDBu가 세포내 PKC를 활성화시켜 45pS의 이온통로를 활성화시키며 이러한 작용의 결과로 세포막전압의 변화가 세포의 기능을 조절할 것으로 사료된다.