• Title/Summary/Keyword: Protein Adsorption

Search Result 209, Processing Time 0.028 seconds

Interaction of Bone Marrow Stromal Stem Cells with Adhesive Protein and Polypeptide-adsorbed Poly(lactide-co-glycolide) Scaffolds (골수유래 간엽줄기세포와 점착성 단백질 및 폴리펩타이드가 흡착된(락티이드/글리콜라이드) 공중합체 지지체와의 상호작용)

  • Choi, Jin-San;Lee, Sang-Jin;Jang, Ji-Wook;Khang, Gil-Son;Lee, Young-Moo;Lee, Bong;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.397-404
    • /
    • 2003
  • The interaction of cell adhesive protein and polypeptide with bone marrow stromal stem cells (BMSCs) grown in tissue engineered films and scaffolds were examined. Several proteins or polypeptide known as cell-adhesive were coated adsorption on poly(lactide-co-glycolide) (PLGA) films and scaffolds and adhesion and proliferation behavior of BMSC on those surfaces were compared. The protein and polypeptide used include collagen IV, fibrinogen, laminin, gelatin, fibronectin, and poly(L-lysine). The protein and polypeptide were adsorbed on the PLGA film surfaces with almost monolayer coverage except poly(L-lysine). BMSCs were cultured for 1, 2, and 4 days on the protein- or polypeptide-adsorbed PLGA films and scaffolds. The cell adhesion and proliferation behaviors were assessed by sulforho damine B assay. It was observed that the protein- or polypeptide-adsorbed surfaces showed better cell adhesion and proliferation than the control.

Optimization of Anion-exchange Chromatography for the Separation of Agarase from Culture Broth of Pseudoalteromonas sp. (Pseudoalteromonas sp. 배양액으로부터 아가레이즈 분리를 위한 음이온교환 크로마토그래피 최적화)

  • Kim, Yu-Na;Lee, Jae-Ran;Kim, Mu-Chan;Kim, Sung-Bae;Chang, Yong-Keun;Hong, Soon-Kwang;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.840-845
    • /
    • 2011
  • Degradation products of agarose are biologically active and thus used as an ingredient in pharmaceuticals or functional cosmetics. Furthermore, it has been strongly considered as a substrate for bio-ethanol fermentation. Recently, we isolated new agarase-producing microorganism, Pseudoalteromonas sp. from south sea of Korea. In this study, we aimed to separate and purify the agarase from culture broth of this strain. Separation of agarase was performed by ion- exchange chromatography on DEAE-Sepharose resin. Equilibrium pH and volume ratio of resin to the amount of protein were optimized for the efficient adsorption of protein. 410 ${\mu}g$ of protein was completely adsorbed to 3 mL of resin at pH 7.5. The total amount of eluted protein increased as NaCl concentration increased to 400 mM at isocratic elution. Agarase was separated by linear gradient elution of NaCl (0~1,000 mM). Three major protein peaks were observed and the presence or absence of agarase in these eluted proteins was measured by Lugol's staining technique. Only six eluted protein fractions showed strong agarase activity.

Separation of selenite and selenate using magnetite (마그네타이트를 이용한 selenite와 selenate의 분리)

  • Min, Je-Ho;Kim, Seung-Soo;Baik, Min-Hoon;Bae, Kie-Seo
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.298-303
    • /
    • 2011
  • Selenium is one of the interesting elements in human body, because it's important micro-nutrient for human health as the essential biological tissue in protein. Selenite ($SeO_3^{2-}$) and selenate ($SeO_4^{2-}$) are the dominant dissolved selenium species in natural water, and their toxicity and chemical properties are very different each other. Thus it is necessary to separate the two selenium species for understanding selenium behaviors in natural waters. Some reported methods, using an alumina-filled column and an ion chromatography, to separate the selenite and selenite may be difficult to directly apply to the natural water. Therefore magnetite selectively adsorbs selenite and selenate according to pH of solution, the separation of selenite and selenate using a magnetite-filled column was successfully obtained at weak alkali solutions. Moreover, the influence of dissolved anions in natural water at the selenite sorption onto magnetite was also investigated because they could hinder the sorption of selenite onto magnetite. In other to directly apply to the natural water, reactive sites of magnetite should be considered because dissolved silicate in natural water can hinder the adsorption of selenite onto magnetite.

Surface Modification of PDMS for Hydrophilic and Antifouling Surface Using PEO-PPO-PEO Block Copolymer (PEO-PPO-PEO 블록 공중합체를 이용한 PDMS의 친수성 표면 개질 방법)

  • Lee, Byungjin;Jin, Si Hyung;Jeong, Seong-Geun;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.791-797
    • /
    • 2017
  • In this study, we optimized a method of PEO-PPO-PEO block copolymer embedding, for solving non-specific protein and biomolecular adsorption and high hydrophobicic surface property, which is widely known as problems of poly (dimethylsiloxane) (PDMS) that has frequently been used in basic biological and its applied research. We assessed its surface modification by controlling the concentration of embedded block copolymer, water-soaking time, and recovery time as variables by contact angle measurements. In order to evaluate its antifouling ability, adsorption of FITC-BSA molecules was quantified. Furthermore, we generated oil-in-water (O/W) emulsion as a proof-of-concept experiment to confirm that the optimized surface modification works properly.

Relationship between the Deposition of Tear Constituents and the Adherence of Candida albicans according to Soft Contact Lens Materials and Pigmentation (소프트콘택트렌즈 재질과 착색에 따른 눈물성분 침착과 칸디다균 흡착의 상관관계)

  • Park, So Hyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.3
    • /
    • pp.215-225
    • /
    • 2016
  • Purpose: The aim of this study was to figure out how the characteristics of soft contact lens materials and pigmentation affect the adherence of C. albicans on soft contact lenses pre-deposited with tear constituents. Methods: The adherent number of C. albicans on clear soft contact lenses (hereinafter clear lenses) and circle soft contact lenses (hereinafter circle lenses) made of etafilcon A, hilaiflcon B and nelfilcon A, respectively, was measured before and after the deposition of artificial tear. Also, bacteria adherence on lenses were observed by a scanning electron microscope. Results: Adherence of C. albicans was significantly different according to lens materials. The amount of adsorption was not different between clear lenses and circle lenses made of etafilcon A however, the number of bacteria absorption was bigger in hilafilcon B and nelfilcon A lenses. More absorption of C. albicans was found in the non-pigmented central area compared the pigmented area, and non-pigmented peripheral area has more bacterial absorption than non-pigmented central area. The number of C. albicans decreased in the case that tear protein was pre-deposited. The maintenance of antibacterial activity against C. albicans was different according to lens materials thus, etafilcon A has the longest period of its maintenance. Conclusions: It was revealed that the number of C. albicans was different according to the characteristics of lens materials, pigmentation or non-pigmentation, the pigmented area of soft contact lenses. Thus, it is suggested that the management method should be different according to the adsorption characteristics of C. albicans.

Surface Modification of Liposomes Using Comblike Copolymer for Enhancing Stability in Blood Circulation (혈류 내 안정성 향상을 위한 빗 모양 고분자로 개질된 리포솜)

  • Sin, Byeong-Cheol;Song, Chung-Gil;Hwang, Tae-Won;Seong, Ha-Su;Park, Eun-Seok
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • To increase the stability of liposomes in blood circulation, surface modification of liposomes by incorporating a lipid-polymer derivative in the lipid bilayer or conjugating a hydrophilic polymer to the liposomal surface has been developed. In this study, the comblike copolymer, poly(HEMA-co-HPOEM), having multiple polyethyleneoxide side chains was prepared by free radical polymerization of hydroxyethylmethacrylate (HEMA) and hydroxypolyoxyethylenemethacrylate (HPOEM) as vinyl monomers. Poly(HEMA-co-HPOEM) was conjugated to the liposomal surface and the characteristics of the modified liposomes in serum were investigated. Conjugation of poly(HEMA-co-HPOEM) to liposomes increased the particle size of the liposomes by 30 nm and decreased the absolute value of zeta potential of the liposomes by shielding the negative charge of liposomal surface. Loading efficiency of model drug, doxorubicin, in liposomes was about 90% and the efficiency was not affected by conjugation of poly(HEMA-co-HPOEM) to liposomes. The particle size of poly(HEMA-co-HPOEM)-conjugated liposomes in serum did not changed and the protein adsorption was lower than that of control liposomes or liposomes containing polyethyleneoxide-lipid derivative (PEG-liposomes). These results suggest that poly(HEMA-co-HPOEM) is efficient for the stabilization of liposomes in blood circulation.

Solid-Phase Refolding of Poly-Lysine fusion Protein of hEGF and Angiogenin (Poly-lysine이 연결된 hEGF와 angiogenin의 융합단백질의 고체상 재접힘)

  • Park, Sang-Joong;Ryu, Kang;Suh, Chang-Woo;Chai, Young-Gyu;Kwon, Oh-Byung;Park, Seung-Kook;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.153-157
    • /
    • 2002
  • A fusion protein, consisting of a human epidermal growth factor as the recognition domain and human angiogenin as the toxin domain, can be used as a targeted therapeutic against breast cancer cells among others. The fusion protein was expressed as an inclusion body in recombinant E. coli, yet when the conventional solution-phase refolding process was used the refolding yield was very low due to severe aggregation, probably because of the opposite surface charge resulting from the vastly different pl values of each domain. Accordingly the solid-phase refolding process, which exploits the ionic interactions between a solid matrix and the protein, was tried, however the ionic binding yield was also very low regardless of the resins and pH conditions used. Therefore, to provide a higher affinity toward the solid matrix, six Iysine residues were tagged to the N-terminus of the hEGF domain. When cation exchange resins, such as heparin- or CM-Sepharose, were used as the matrix, the adsorption capacity increased 2.5~3-fold and the subsequent refolding yield increased nearly 15-fold compared to the conventional process. A similat result was also obtained when an Ni-NTA metal affinity resin was used.

Preparation of Protein-coated Cationic Liposomes Containing Doxorubicin and Their Binding Property of Blood Plasma Protein (독소루비신을 함유하고 단백질로 수식된 양이온성 리포솜의 제조 및 혈장 단백흡착 특성)

  • Kim, Sung-Kyu;Jung, Soon-Hwa;Jung, Suk-Hyun;Seong, Ha-Soo;Chi, Sang-Cheol;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • are nanometer or micrometer scale vesicles that can be used as drug delivery carriers. However, plain liposomes are plagued by rapid opsonization, making their circulation time in bloodstream be shortened. In this study, model protein, bovine serum albumin (BSA)-coated liposomes were prepared by coating cationic liposomes with BSA molecules at higher pH than isoelectric point of BSA. The BSA molecules coated on the liposomal surface were denatured by thermal treatment at above 60oC. While both plain and cationic liposomes had about mean particle diameter of 1041 nm, BSA-coated cationic liposomes (BCL) had mean particle diameter of 1091 nm. Encapsulation of model drug, doxorubicin (DOX), in liposomes were carried out by using remote loading method and the loading efficiency of DOX to liposomes was about 90%. The mean particle diameter of BCL did not increase in blood plasma and adsorption of plasma protein was much less than plain or cationic liposomes. These results suggest that BCL can be used as a long-circulating liposomes in bloodstream.

Affinity Filtration Chromatography of Proteins by Chitosan and Chitin Membranes: 1. Preparation and Characterization of Porous Affinity Membranes (키토산 및 키틴 막에 의한 단백질의 친화 여과 크로마토그래피: 1. 다공성 친화 막의 제조와 특성 평가)

  • Youm Kyung-Ho;Yuk Yeong-Jae
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.39-50
    • /
    • 2006
  • Porous chitosan and chitin membranes were prepared by using silica particles as porogen. Membrane preparation was achieved via the following three steps: (1) chitosan film formation by casting an chitosan solution containing silica particles, (2) preparation of porous chitosan membrane by dissolving the silica particles by immersing the film into an alkaline solution and (3) preparation of porous chitin membrane by acetylation of chitosan membrane with acetic anhydride. The optimum preparation conditions which could provide a chitosan and chitin membranes with good mechanical strength and adequate pure water flux were determined. To allow protein affinity, a reactive dye (Cibacron Blue 3GA) was immobilized on porous chitosan membrane. Binding capacities of affinity chitosan and chitin membranes for protein and enzyme were determined by the batch adsorption experiments of BSA protein and lysozyme enzyme. The maximum binding capacity of affinity chitosan membrane for BSA protein is about 22 mg/mL, and that of affinity chitin membrane for lysozyme enzyme is about 26 mg/mL. Those binding capacities are about $several{\sim}several$ tens times larger than those of chitosan and chitin-based hydrogel beads. Those results suggest that the porous chitosan and chitin membranes are suitable in affinity filtration chromatography for large scale separation of proteins.

Dyeing Property and Antimicrobial activity of Protein Fiber Using Terminalia chebula Retzius Extract (가자열매 추출물을 이용한 단백질 섬유의 염색과 항균효과)

  • Nam, Ki Yeon;Lee, Jung Soon
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.476-484
    • /
    • 2014
  • The purpose of this study was to investigate the dyeing properties and anti-microbial ability of silk and wool fabrics dyed with Terminalia chebula Retzius(TCR) extract using two extraction solvent, hot water and methanol. Dyeing properties of fabrics were studied by investigating the characteristics of colorant, changes in dye uptake under different dyeing conditions, and by investigating color change when mordants were applied. Also, color fastness, and antimicrobial activity of dyed fabrics were estimated. Regardless of extraction solvent type, colorant showed maximum absorption wavelength at 280 nm and 578 nm, which implied that tannin was the major pigment component of TCR. Also, through FT-IR spectrum result, it was confirmed that tannin of TCR methanol extract was hydrolysable tannin. But for the hot water extract, it was only assumed that its tannin was condenced tannin. Fabric dyed with hot water solvent extract showed higher dye uptake than fabric dyed with methanol solvent extract, dye uptake increasing by higher concentration of the dye, longer dyeing time and higher dyeing temperature. And the absorption curve between TCR extract and protein fiber was shaped in the form of Langmuir adsorption isotherm. Fabric dyed without mordant was yellow in color, and when dyed with mordant, fabric showed various colors depending on mordant types except Sn. Color fastness to washing was generally fine and color fastness to light was moderate. But color fastness to rubbing and dry cleaning was outstanding. Lastly, dyed fabrics showed very good antimicrobial activity of 99.9% against Staphylococcus aureus and Kiebsiella pneumoniae.