• 제목/요약/키워드: Protective oxide layer

검색결과 93건 처리시간 0.025초

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • 제16권5호
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.

Microstructural characterization of accident tolerant fuel cladding with Cr-Al alloy coating layer after oxidation at 1200 ℃ in a steam environment

  • Park, Dong Jun;Jung, Yang Il;Park, Jung Hwan;Lee, Young Ho;Choi, Byoung Kwon;Kim, Hyun Gil
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2299-2305
    • /
    • 2020
  • Zr alloy specimens were coated with Cr-Al alloy to enhance their resistance to oxidation. The coated samples were oxidized at 1200 ℃ in a steam environment for 300 s and showed extremely low oxidation when compared to uncoated Zr alloy specimens. The microstructure and elemental distribution of the oxides formed on the surface of Cr-Al alloys have been investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A very thin protective layer of Cr2O3 formed on the outer surface of the Cr-Al alloy, and a thin Al2O3 layer was also observed in the Cr-Al alloy matrix, near the surface. Our results suggest that these two oxide layers near the surface confers excellent oxidation resistance to the Cr-Al alloy. Even after exposure to a high temperature of 1200 ℃, inter-diffusion between the Cr-Al alloy and the Zr alloy occurred in very few regions near the interface. Analysis of the inter-diffusion layer by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) measurement confirmed its identity as Cr2Zr.

PECVD법으로 증착한 Cr코팅층이 Inconel 601과 Ni의 내산화성에 미치는 영향 (The effect of Cr coated on the Ni and Inconel 601 substrate by PECVD on the oxidation behavior at high temperature)

  • 강옥경;정명모;김길무
    • 한국표면공학회지
    • /
    • 제28권3호
    • /
    • pp.142-151
    • /
    • 1995
  • In this research, a thin layer of Cr was coated on the pure Ni and Inconel 601 by PECVD (Plasma Enhanced Chemical Vapor Deposition) in order to study the effect of Cr on the oxidation behavior at high temperature. Cr coated Inconel 601, which was oxidized at $1100^{\circ}C$ for 24 hours, formed a protective $Cr_2O_3$ oxide layer and the resistance to isothermai oxidation was improved. On the other hand, oxidation resistance of Cr coated Inconel 601 at 100$0^{\circ}C$ was not significantly improved, probably due to the formation or insufficient $Cr_2O_3$ layer. But, when oxidized at $1000^{\circ}C$ and $1100^{\circ}C$ for 100 hours, Cr coated Inconel 601 improved isothermal oxidation resistance by the formation of continuous $Cr_2O_3$ external scale and by the development of $Al_2O_3$ subscales. Cr coated Ni formed inner layer of $Cr_2O_3$ within almost pure NiO, which provided additional cation vacancies, thus increasing the mobility of Ni ions in this region. It is believed that this doping effect resulted in an increase in the observed oxidation rate compared with pure Ni and did not improve the oxidation resistance.

  • PDF

마그네슘합금의 산화저항성에 미치는 산화칼슘 첨가의 영향 (The Effect of Calcium Oxide on Oxidation Resistance of Magnesium alloy)

  • 김기범;김상필;김권후
    • 열처리공학회지
    • /
    • 제33권3호
    • /
    • pp.129-134
    • /
    • 2020
  • Due to excellent properties such as high specific strength and low density, application of magnesium alloys have been rapidly increased. However, magnesium alloy has a serious problem that is easily oxidized when exposed to high-temperature. For this reason, magnesium alloys have been generally used for SF6 gas such as protective cover gas in casting and melting, but it has been reported that this gas has a serious influence on global warming. Therefore, many researchers have been studied to improve the oxidation resistance of magnesium alloy. It was reported that addition of Be, Ca and CaO in magnesium alloy can improve the oxidation properties. In this study, the possibility of improving the oxidation resistance by adding CaO extracted from oyster shells was investigated. Oyster shells were completely decomposed into CaO and CO2 by annealing. With the addition of CaO, a coexistence region of MgO + CaO was formed in the oxide layer and its thickness was also reduced.

고 전력 DMOSFET 응용을 위한 트렌치 게이트 형성에 관한 연구 (A Study on the Formation of Trench Gate for High Power DMOSFET Applications)

  • 박훈수;구진근;이영기
    • 한국전기전자재료학회논문지
    • /
    • 제17권7호
    • /
    • pp.713-717
    • /
    • 2004
  • In this study, the etched trench properties including cross-sectional profile, surface roughness, and crystalline defects were investigated depending on the various silicon etching and additive gases, For the case of HBr$He-O_2SiF_4$ trench etching gas mixtures, the excellent trench profile and minimum defects in the silicon trench were achieved. Due to the residual oxide film grown by the additive oxygen gas, which acts as a protective layer during trench etching, the undercut and defects generation in the trench were suppressed. To improve the electrical characteristics of trench gate, the hydrogen annealing process after trench etching was also adopted. Through the hydrogen annealing, the trench corners might be rounded by the silicon atomic migration at the trench corners having high potential. The rounded trench corner can afford to reduce the gate electric field and grow a uniform gate oxide. As a result, dielectric strength and TDDB characteristics of the hydrogen annealed trench gate oxide were remarkably increased compared to the non-hydrogen annealed one.

Evaluation of dissolution characteristics of magnetite in an inorganic acidic solution for the PHWR system decontamination

  • Ayantika Banerjee ;Wangkyu Choi ;Byung-Seon Choi ;Sangyoon Park;Seon-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1892-1900
    • /
    • 2023
  • A protective oxide layer forms on the material surfaces of a Nuclear Power Plant during operation due to high temperature. These oxides can host radionuclides, the activated corrosion products of fission products, resulting in decommissioning workers' exposure. These deposited oxides are iron oxides such as Fe3O4, Fe2O3 and mixed ferrites such as nickel ferrites, chromium ferrites, and cobalt ferrites. Developing a new chemical decontamination technology for domestic CANDU-type reactors is challenging due to variations in oxide compositions from different structural materials in a Pressurized Water Reactor (PWR) system. The Korea Atomic Energy Research Institute (KAERI) has already developed a chemical decontamination process for PWRs called 'HyBRID' (Hydrazine-Based Reductive metal Ion Decontamination) that does not use organic acids or organic chelating agents at all. As the first step to developing a new chemical decontamination technology for the Pressurized Heavy Water Reactor (PHWR) system, we investigated magnetite dissolution behaviors in various HyBRID inorganic acidic solutions to assess their applicability to the PHWR reactor system, which forms a thicker oxide film.

Characterization of Microstructure, Hardness and Oxidation Behavior of Carbon Steels Hot Dipped in Al and Al-1 at% Si Molten Baths

  • Trung, Trinh Van;Kim, Sun Kyu;Kim, Min Jung;Kim, Seul Ki;Bong, Sung Jun;Lee, Dong Bok
    • 대한금속재료학회지
    • /
    • 제50권8호
    • /
    • pp.575-582
    • /
    • 2012
  • Medium carbon steel was aluminized by hot dipping into molten Al or Al-1 at% Si baths. After hot-dipping in these baths, a thin Al-rich topcoat and a thick alloy layer rich in $Al_5Fe_2$ formed on the surface. A small amount of FeAl and $Al_3Fe$ was incorporated in the alloy layer. Silicon from the Al-1 at% Si bath was uniformly distributed throughout the entire coating. The hot dipping increased the microhardness of the steel by about 8 times. Heating at $700-1000^{\circ}C$, however, decreased the microhardness through interdiffusion between the coating and the substrate. The oxidation at $700-1000^{\circ}C$ in air formed a thin protective ${\alpha}-Al_2O_3$ layer, which provided good oxidation resistance. Silicon was oxidized to amorphous silica, exhibiting a glassy oxide surface.

X-ray Photoelectron Spectroscopy를 이용한 냉연 강판의 표면 분석 연구 (Surface Analysis of Cold Rolled Steel Sheets by X-ray Photoelectron Spectroscopy)

  • 이도형;소재춘
    • 분석과학
    • /
    • 제7권1호
    • /
    • pp.115-124
    • /
    • 1994
  • 탈지과정을 거친 냉연 강판을 순수로 세정하는 과정에서 발생하는 rust와 이러한 rust 발생을 방지하기 위하여 0.05%(wt) $Na_5P_3O_{10}$ 용액으로 표면처리한 냉연 강판의 표면은 X-ray Photoelectron Spectroscopy(XPS) 방법으로 비교 분석하였다. Rust가 발생한 냉연 강판의 표면은 $Fe_2O_3$ 및 FeO, 그리고 $Fe(OH)_3$등으로 구성되는 산화층이 $1500{\AA}$정도의 두께로 존재함을 알 수 있었고, 한편 $Na_5P_3O_{10}$ 용액으로 표면처리한 냉연 강판의 표면은 $60{\AA}$정도의 인산염 피막이 얇은 Fe 산화층 위에 존재함으로써 보호 피막의 역할을 한다는 것을 알 수 있었다.

  • PDF

초고강도 자동차용 강의 환원정전류인가에 따른 산화 거동 변화 연구 (Investigation on the Effects of Hydrogen Charging on Oxidation Behavior of Ultrahigh-Strength Automotive Steels)

  • 하헌영;김혜진;문준오;이태호;조효행;이창근;유병길;양원석
    • Corrosion Science and Technology
    • /
    • 제16권6호
    • /
    • pp.317-327
    • /
    • 2017
  • The change in the oxidation behavior of three types of B-added ultrahigh strength martensitic steels containing Ti and Nb induced by applying constant cathodic current was investigated. In a 3% NaCl+0.3% $NH_4SCN$ solution, the overall polarization behavior of the three alloys was similar, and degradation of the oxide film was observed in the three alloys after applying constant cathodic current. A significant increase in the anodic current density was observed in the Nb-added alloy, while it was diminished in the Ti-added alloy. Both Ti and Nb alloying decreased the hydrogen overpotential by forming NbC and TiC particles. In addition, the thickest oxide film was formed on the Ti-added alloy, but the addition of Nb decreased the film thickness. Therefore, it was concluded that the remarkable increase in the anodic current density of Nb-added alloy induced by applying constant cathodic current density was attributed to the formation of the thinnest oxide film less protective to hydrogen absorption, and the addition of Ti effectively blocked the hydrogen absorption by forming TiC particles and a relatively thick oxide film.

고체산화물 연료전지 금속연결재용 STS 444의 코발트 보호막 산화 특성 (Oxidation Properties of Cobalt Protective Coatings on STS 444 of Metallic Interconnects for Solid Oxide Fuel Cells)

  • 홍종은;임탁형;이승복;유영성;송락현;신동열;이덕열
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.455-463
    • /
    • 2009
  • 코발트 보호막 코팅이 적용된 페라이트계 스테인리스 스틸인 STS 430과 STS 444 소재에 대해 고체산화물 연료전지용 금속연결재로서의 고온 산화 특성에 대해 살펴보았다. 코발트 코팅층은 $800^{\circ}C$ 고온 산화 후 코발트 산화물 및 $Co_2CrO_4$, $CoCr_2O_4$, $CoCrFeO_4$ 등과 같은 코발트가 함유된 스피넬 상을 형성하였다. 또한 페라이트계 스테인리스 스틸과 코발트 코팅의 계면에서 크롬과 철이 함유된 치밀한 산화층을 형성하여 금속연결재 표면의 스케일 성장속도를 감소시키고 금속연결재 내에 함유된 크롬의 외부 확산을 효과적으로 억제하였다. 한편 STS 430은 고온 산화 후 표면에 형성된 스케일 하부에 $SiO_2$와 같은 내부 산화물이 형성된 반면 STS 444는 표면 스케일 이외에 다른 내부 산화물은 확인되지 않았으며 고온에서의 면저항 측정 결과, 코발트가 코팅된 STS 444의 전기 전도성이 STS 430 보다 우수한 것으로 나타났다.