Oxidation Properties of Cobalt Protective Coatings on STS 444 of Metallic Interconnects for Solid Oxide Fuel Cells

고체산화물 연료전지 금속연결재용 STS 444의 코발트 보호막 산화 특성

  • Hong, Jong-Eun (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Lim, Tak-Hyung (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Lee, Seung-Bok (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Yoo, Young-Sung (Strategic Technology Laboratory, Korea Electric Power Research Institute, Korea Electric Power Corporation) ;
  • Song, Rak-Hyun (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Shin, Dong-Ryul (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Lee, Dok-Yol (Department of Materials Science and Engineering, Korea Univ.)
  • 홍종은 (한국에너지기술연구원 신재생에너지연구부) ;
  • 임탁형 (한국에너지기술연구원 신재생에너지연구부) ;
  • 이승복 (한국에너지기술연구원 신재생에너지연구부) ;
  • 유영성 (한국전력연구원 전략기술연구소) ;
  • 송락현 (한국에너지기술연구원 신재생에너지연구부) ;
  • 신동열 (한국에너지기술연구원 신재생에너지연구부) ;
  • 이덕열 (고려대학교 신소재공학과)
  • Published : 2009.12.30

Abstract

코발트 보호막 코팅이 적용된 페라이트계 스테인리스 스틸인 STS 430과 STS 444 소재에 대해 고체산화물 연료전지용 금속연결재로서의 고온 산화 특성에 대해 살펴보았다. 코발트 코팅층은 $800^{\circ}C$ 고온 산화 후 코발트 산화물 및 $Co_2CrO_4$, $CoCr_2O_4$, $CoCrFeO_4$ 등과 같은 코발트가 함유된 스피넬 상을 형성하였다. 또한 페라이트계 스테인리스 스틸과 코발트 코팅의 계면에서 크롬과 철이 함유된 치밀한 산화층을 형성하여 금속연결재 표면의 스케일 성장속도를 감소시키고 금속연결재 내에 함유된 크롬의 외부 확산을 효과적으로 억제하였다. 한편 STS 430은 고온 산화 후 표면에 형성된 스케일 하부에 $SiO_2$와 같은 내부 산화물이 형성된 반면 STS 444는 표면 스케일 이외에 다른 내부 산화물은 확인되지 않았으며 고온에서의 면저항 측정 결과, 코발트가 코팅된 STS 444의 전기 전도성이 STS 430 보다 우수한 것으로 나타났다.

Keywords

References

  1. S. C. Singhal, 'Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications', Solid State Ionics, Vol. 152-153, 2003, pp. 405-410 https://doi.org/10.1016/S0167-2738(02)00349-1
  2. K. Hilpert, W. J. Quadakkers, and L. Singheiser, 'Handbook of Fuel Cells, Fundamentals Technology and Applications, Chap. 74-Interconnects', John Wiley & Sons, Chichester, Vol. 4, 2003
  3. Y. Matsuzaki and I. Yasuda, 'Electrochemical Properties of a SOFC Cathode in Contact with a Chromium-containing Alloy Separator', Solid State Ionics, Vol. 132, 2000, pp. 271-27 https://doi.org/10.1016/S0167-2738(00)00654-8
  4. K. Hilpert, D. Das, M. Miller, D. H. Peck, and R. WeiB, 'Chromium Vapor Species over Solid Oxide Fuel Cell Interconnect Materials and Their Potential for Degradation Processes', J. Electrochem. Soc., Vol. 143, 1996, pp. 3642-3647 https://doi.org/10.1149/1.1837264
  5. P. Huczkowski, N. Christiansen, V. Shemet, L.Niewolak, J. P. Abellan, L. Singheiser, and W. J. Quadakkers, 'Growth Mechanisms and Electrical Conductivity of Oxide Scales on Ferritic Steels Proposed as Interconnect Materials for SOFCs', Fuel Cells, Vol. 6, 2006, pp. 93-99 https://doi.org/10.1002/fuce.200500110
  6. H. W. Nie, T. Wen, and H. Y. Tu, 'Protection Coatings for Planar Solid Oxide Fuel Cell Interconnect prepared by Plasma Spraying', Mater. Res. Bull., Vol. 38, 2003, pp. 1531-1536 https://doi.org/10.1016/S0025-5408(03)00166-1
  7. J. H. Kim, R. H. Song, and S. H. Hyun, 'Effect of Slurry-coated LaSrMnO3 on the Electrical Property of Fe–Cr Alloy for Metallic Interconnect of SOFC', Solid State Ionics, Vol. 174, 2004, pp. 185-191 https://doi.org/10.1016/j.ssi.2004.07.032
  8. Z. Yang, G. G. Xia, S. P. Simner, and J. W. Stevenson, 'Thermal Growth and Performance of Manganese Cobaltite Spinel Protection Layers on Ferritic Stainless Steel SOFC Interconnects', J. Electrochem. Soc., Vol. 152, 2005, pp. A1896-A1901 https://doi.org/10.1149/1.1990462
  9. Z. Yang, G. G. Xia, X. H. Li, and J. W. Stevenson, '(Mn,Co)3O4 Spinel Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications', Int. J. Hydrogen Energy, Vol. 32, 2007, pp. 3648-3654 https://doi.org/10.1016/j.ijhydene.2006.08.048
  10. S. P. S. Badwal, R. Deller, K. Foger, Y. Ramprakash, and J. P. Zhang, 'Interaction Between Chromia Forming Alloy Interconnects and Air Electrode of Solid Oxide Fuel-Cells', Solid State Ionics, Vol. 99, 1997, pp. 297-310 https://doi.org/10.1016/S0167-2738(97)00247-6
  11. M. Stanislowski, J. Froitzheim, L. Niewolak, W. J. Quadakkers, K. Hilpert, T. Markus, and L. Shingheiser, 'Reduction of Chromium Vaporization from SOFC Interconnectors by Highly Effective Coatings', J. Power Sources, Vol. 164, 2007 pp. 578-589 https://doi.org/10.1016/j.jpowsour.2006.08.013
  12. M. Zahid, F. Tietz, D. Sebold, H. P. Buchkremer, 'Reactive Coatings against Chromium Evaporation in Solid Oxide Fuel Cells', In: Mogensen M, editor. Proceedings of third European SOFC forum, European solid oxide fuel cell forum, Switzerland. 2004. pp. 820
  13. H. Ling and A. Petric, 'Electrical and Thermal Properties of Spinels', in Solid Oxide Fuel Cells (SOFC IX), J. Mizusaki and S. C. Singhal (Eds), The Electrochemical Society Proceedings Series, Pennington, NJ, PV 2005-07, 2005, pp. 1866-1873
  14. J. E. Hong, T. H. Lim, R. H. Song, S. B. Lee, D. R. Shin, Y. S. Yoo, D. Y. Lee, 'Effects of Cobalt Protective Coating Prepared by DC Electroplating on Ferritic Stainless Steel for SOFC Interconnect', Trans. of the Korean Society of Hydrogen Energy, Vol. 20, No. 2, 2009, pp. 116-124
  15. M. Schlesinger and M. Paunovic, 'Modern Electroplating', 4th ed., John Wiley & Sons, USA, 2000
  16. Z. Yang, J. S. Hardy, M. S. Walker, G. Xia, S. P. Simner, and J. W. Stevenson, 'Structure and Conductivity of Thermally Grown Scales on Ferritic Fe-Cr-Mn Steel for SOFC Interconnet Applications', J. Electrochem. Soc. vol. 151, 2004, pp. 1825-1831 https://doi.org/10.1149/1.1797031
  17. K. Honegger, A. Plas, R. Diethelm, W. Glatz, 'Evaluation of Ferritic Steel Interconnects for SOFC Stacks', in Solid Oxide Fuel Cells (SOFC VII), H. Yokokawa and S. C. Singhal (Eds), The Electrochemical Society Proceedings Series, Pennington, NJ, PV 2001-16, 2001, pp. 803-810
  18. Y. Larring and T. Norby, 'Spinel and Perovskite Functional Layers between Plansee Metallic Interconnect (Cr-5wt% Fe-1wt% Y2O3) and Ceramic (La0.85Sr0.15)0.91MnO3 Cathode Materials for Solid Oxide Fuel Cells', J. Electrochem. Soc., Vol. 147, 2000, pp. 3251-3256 https://doi.org/10.1149/1.1393891