• Title/Summary/Keyword: Prostaglandin %24D_2%24

Search Result 12, Processing Time 0.028 seconds

The Effects of Bee Venom on PLA2, COX-2, iNOS, AA and PG in RAW 264.7 Cells (봉약침액(蜂藥鍼液)이 PLA2, COX-2, iNOS, AA 및 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Ha, Seang-Jong;Lee, Seong-No;Jo, Hyun-Chul;Kim, Kee-Hyun
    • Journal of Pharmacopuncture
    • /
    • v.5 no.2
    • /
    • pp.40-51
    • /
    • 2002
  • Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide-induced expression phospholipase $A_2$, cyclooxygenase-2 and inducible nitrogen oxide synthase, and the generation of arachidonic acid, prostaglandin D2 and E2 in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of phospholipase $A_2$, cyclooxygenase and inducible nitrogen oxide synthase was determined by western blotting with corresponding antibodies, and the generation of arachidonic acid, prostaglandin $D_2$ and $E_2$ was assayed by ELISA method in RAW 264.7 cells. The non-toxic concentrations (0.1 to $5\;{\mu}g/ml$) of bee venom determined by MTT assay, were used in this study. Results : 1. Bee venom inhibited lipopolysaccharide-induced expression of phospholipase $A_2$ in a dose dependent manner after 48 hours treatment. 2. Bee venom inhibited lipopolysaccharide-induced expression of cyclooxygenase-2 in a dose dependent manner after 24 and 48 hours treatment. 3. Bee venom inhibited lipopolysaccharide-induced expression of inducible nitrogen oxidesynthase in a dose dependent manner after 48 hours treatment. 4. The generation of arachidonic acid, prostaglandin $D_2$ and $E_2$ was not much affected by the treatment of bee venom on the lipopolysaccharide-induced generation of arachidonic acid, prostaglandin $D_2$ and $E_2$ in RAW 264.7 cells.

Anti-platelet Effect of Carvacrol Extracted from Thuja Orientalis L.;A Possible Mechanism Through Arachidonic Acid Pathway (백자인에서 추출된 Carvacrol의 항혈소판 효과)

  • Ahn, Byeong-Joon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.24 no.2
    • /
    • pp.31-38
    • /
    • 2007
  • 목적 : 백자인에서 추출된 Carvacrol이 혈소판 활성화와 혈액 응고에 미치는 영향에 대해 알아보고자 하였다. 방법 : Carvacrol의 항혈소판 효과의 기제를 밝히기 위해 토끼 혈소판으로 Arachidonic Acid 유리,TXB2, PGD2, 12-HETE의생성을 방사선 크로마토그래피 분석을 사용하여 측정하였다. 결과 : 1. U46619를 제외하고 Collagen과 AA에 의해 유발된 응고는 Carvacrol 농도에 따라 억제되었다. 2. Collagen으로 인하여 자극된 AA 유리에 대한 Carvacrol의 유의한 억제 효과는 나타나지 않았다. 3. AA로 유발된 TXB2, PGD2와 12-HETE의 생성억제에 대한 실험에서 Carvacrol은 유의한 억제가 있는 것으로 나타났으며,농도의존적으로 억제되었다. 결론 : Carvacrol은 항혈소판 작용이 있는 것으로 볼 수 있다. 이는 한의학에서 활혈거어 작용으로 해석될수 있으며,타박상,윌경곤란증,탈모증 등 어혈질환의 예방 및 치료와 관련된 약침개발에 기초가 될수 있을 것으로 사료된다.

  • PDF

The Ethylacetate Extract of North Kangwhal(Ostericum koreanum) Attenuates the Inflammatory Responses in PMA/A23187-stimulated Mast Cells (북강활 에틸아세테이트분획의 비만세포에서의 염증반응 억제효과)

  • Seo, Un-Kyo;Lee, Ju-Il;Park, Jun-Hong;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.23 no.4
    • /
    • pp.81-89
    • /
    • 2008
  • Objectives: In this study, the pharmacological effects of the ethylacetate extract of Ostericum koreanum(North Kangwhal; NK) on allergic inflammation were investigated in activated human mast cells. Methods: North Kangwhal was extracted with 80% methanol for 24 h, and then fractionated with ethylacetate(NK-EtOAc extract). HMC-1 cells, an human mast line, were pre-incubated with different concentrations of NK-EtOAc extract for 30 min, and then stimulated with PMA(50 nM/ml) and A23187($1{\mu}M/ml$) at indicated times. The cell toxicity was determined by MTT assay. The concentrations of prostaglandin E2(PGE2) and cytokines(TNF-${\alpha}$, IL-8) were measured by enzyme-linked immunosorbant assay. Results: NK-EtOAc extract($10{\sim}50{\mu}g/ml$) significantly inhibited the productions of $PGE_2$, TNF-${\alpha}$ and IL-8 in PMA/A23187-stimulated HMC-1 cells without cell toxicity($0{\sim}50{\mu}g/ml$). NK-EtOAc extract also inhibited PMA/A23187-induced phosphorylation of ERK1/2 MAPK and the NF-${\kappa}B$ p65 subunit translocation into the nuclear of HMC-1 cells. Conclusions: This study suggests that NK-EtOAc extract may have an anti-inflammatory property through suppressing the production of inflammatory mediators in activated mast cells and its molecular mechanism underlies the blocking of NF-${\kappa}B$ pathway.

  • PDF

Biological activity of flavonoids from Sonchus brachyotus

  • Lee, Jeong Min;Yim, Mi-Jin;Kim, Hyun-Soo;Ko, Seok-Chun;Kim, Ji-Yul;Shin, Jung Min;Lee, Dae-Sung
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.12
    • /
    • pp.428-436
    • /
    • 2021
  • The aim of this study was to isolate and identify secondary metabolites from Sonchus brachyotus and evaluate their antioxidant and anti-inflammatory activities. In this study, we isolated three flavonoids from a 70% EtOH extract by Medium Pressure Liquid Chromatography (MPLC) and prep-High-Performance Liquid Chromatography (HPLC). To evaluate the biological activities (antioxidant and anti-inflammatory) of these flavonoids, their in vitro inhibitory activities against lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) generation, nitric oxide (NO) production, and prostaglandin E2 (PGE2) secretion were determined. We successfully identified three flavonoids, namely luteolin (1), luteolin-7-O-β-D-glucoside (2), and luteolin-7-O-β-D-glucuronide (3) by spectral analyses. Luteolin (1) at 20 ㎍/mL inhibited ROS generation, NO production, and PGE2 secretion by 48.6%, 61.28% and 12.10%, respectively, and luteolin-7-O-β-D-glucoside (2) inhibited NO and PGE2 generation by 67.03% and 20.82%, respectively. Luteolin (1) and luteolin-7-O-β-D-glucoside (2) showed similar anti-inflammatory activities; however, luteolin (1) was observed to be a stronger antioxidant. Besides antioxidant and anti-inflammatory activities, S. brachyotus extract containing luteolin (1) and luteolin-7-O-β-D-glucoside (2) is considered to possess diverse biological activities. The results indicate that S. brachyotus is an edible medicinal plant, which is believed to be significant resource of functional foods.

Cytochalasin D-induced Matrix Metalloproteinase-2 Regulates Articular Chondrocytes Dedifferentiation

  • Choi, In-Kyu;Yu, Seon-Mi;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.14 no.3
    • /
    • pp.179-186
    • /
    • 2008
  • Matrix metalloproteinases (MMPs), also designated matrixins, hydrolyze components of the extracellular matrix. These proteinases playa central role in many biological processes, such as embryogenesis, normal tissue remodeling, wound healing, and angiogenesis, and in diseases such as atheroma, arthritis, cancer, and tissue ulceration. In previous data, disruption of the actin cytoskeleton by cytochalasin D (CD) inhibited NO-induced apoptosis, dedifferentiation, cyclooxygenase (COX)-2 expression, and prostaglandin $E_2$ production in chondrocytes cultured on plastic or during cartilage explants culture. In this study, we investigated the effects of the actin cytoskeleton architecture on MMP-2 expression and dedifferentiation by CD in rabbit articular chondrocytes. Rabbit articular chondrocytes were prepared from cartilage slices of 2-weeks-old New Zealand white rabbits by enzymatic digestion. CD was used as a disruptor of actin cytoskeleton. In this experiments measuring CD dose response, primary chondrocytes were treated with various concentrations of CD for 24h. The actin disruption was determined by immunostaining. MMP-2 expression levels were determined by immunoblot analysis and Reverse transcriptase-Polymerase chain reaction (RT-PCR) and MMP-2 activity was determined by gelatin zymography. We found that cell morphological change and up-regulation of MMP-2 expression by CD as determined via immunostaining, gelatin zymography and immunoblotting. Moreover, CD induced MMP-2 transcription was detected by RT-PCR. Also, CD-induced type II collagen expression was inhibited by MMP-2 inhibitor I treatment. Our results indicate that CD up-regulated MMP-2 activation causes dedifferentiation of articular chondrocyte.

  • PDF

Src Kinase Regulates Nitric Oxide-induced Dedifferentiation and Cyc1ooxygenase-2 Expression in Articular Chondrocytes via p38 Kinase-dependent Pathway

  • Yu, Seon-Mi;Lee, Won-Kil;Yoon, Eun-Kyung;Lee, Ji-Hye;Lee, Sun-Ryung;Kim, Song-Ja
    • IMMUNE NETWORK
    • /
    • v.6 no.4
    • /
    • pp.204-210
    • /
    • 2006
  • Background: Nitric oxide (NO) in articular chondrocytes regulates dedifferentiation and inflammatory responses by modulating MAP kinases. In this study, we investigated whether the Src kinase in chondrocytes regulates NO-induced dedifferentiation and cyclooxygenase-2 (COX-2) expression. Methods: Primary chondrocytes were treated with various concentrations of SNP for 24 h. The COX-2 and type II collagen expression levels were determined by immunoblot analysis, and prostaglandin $E_2\;(PGE_2)$ was determined by using a $PGE_2$ assay kit. Expression and distribution of p-Caveolin and COX-2 in rabbit articular chondrocytes and cartilage explants were determined by immunohistochemical staining and immunocytochemical staining, respectively. Results: SNP treatment stimulated Src kinase activation in a dose-dependent manner in articular chondrocytes. The Src kinase inhibitors PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine], a significantly blocked SNP-induced p38 kinase and caveolin-1 activation in a dose-dependent manner. Therefore, to determine whether Src kinase activation is associated with dedifferentiation and/or COX-2 expression and $PGE_2$ production. As expected, PP2 potentiated SNP-stimulated dedifferentiation, but completely blocked both COX-2 expression and $PGE_2$ production. And also, levels of p-Caveolin and COX-2 protein expression were increased in SNP-treated primary chondrocytes and osteoarthritic and rheumatoid arthritic cartilage, suggesting that p-Caveolin may playa role in the inflammatory responses of arthritic cartilage. Conclusion: Our previously studies indicated that NO caused dedifferentiation and COX-2 expression is regulated by p38 kinase through caveolin-1 (1). Therefore, our results collectively suggest that Src kinase regulates NO-induced dedifferentiation and COX-2 expression in chondrocytes via p38 kinase in association with caveolin-1.

Biological Potential of Enzymatic and Polyphenol Extracts from Ecklonia cava (감태 효소 추출물 및 폴리페놀 추출물의 생리활성에 관한 연구)

  • Lee, Su Min;Kim, Jin Eun;Oh, Myoung Jin;Lee, Joo Dong;Jeon, You-Jin;Kim, Bora
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • To investigate the efficacy of enzymatic extract of Ecklonia cava and its polyphenol extract (AG-DK) as cosmetic ingredients, the anti-oxidative effect, anti-glycation effect, anti-melanogenic effect, and anti-inflammatory effect of the extracts were evaluated in vitro. The enzymatic extract of E. cava ($SC_{50}$ 42.9 ppm) and AG-DK ($SC_{50}$ 6.4 ppm) showed a strong DPPH free radical scavenging activity. The anti-glycation ability of the enzymatic extract of E. cava and AG-DK was tested using bovine serum albumin (BSA), which inhibited the formation of advanced glycation end-products (AGEs) in the BSA/glucose system. The enzymatic extract of E. cava ($IC_{50}$ 97.2 ppm) and AG-DK ($IC_{50}$ 7 ppm) had inhibitory effects on tyrosinase activity. Moreover, the enzymatic extract of E. cava and AG-DK had an anti-inflammatory effect through the inhibition of nitricoxide (NO) and prostaglandin E2 ($PGE_2$). These findings suggest that the enzymatic extract of E. cava and AG-DK can be applied to skin-care products as cosmetic ingredients.

Photoprotection and Anti-inflammatory Effects of Chinese Medical Plants (약용식물추출물의 광보호 효과와 항염증 효과 연구)

  • Jin-Hwa, Kim;Sung-Min, Park;Gwan-Sub, Sim;Bum-Chun , Lee;Hyeong-Bae, Pyo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.227-233
    • /
    • 2004
  • Chronic exposure to solar radiation, particularly ultraviolet (UV) light, causes a variety of adverse reactions on human skin, such as sunburn, photoaging and photocarcinogenesis. Free radicals and reactive oxygen species (ROS) caused by UV exposure or other environmental facts play critical roles in cellular damage. And, repeated-UV irradiation activated the expression of the matrix metalloproteinase (MMP) and induced skin irritation. Therefore, the development of effective and safe photoprotectants that can reduce and improve the skin damage has been required. The purpose of this study was to investigate the photo-protective effect of several chinese medical plants (Juniperus chinensis) on the UV -induced skin cell damages. We tested free radical and superoxide scavenging effect in vitro. Fluorometric assays of the proteolytic activities of MMP-1 (collagenase) were performed using fluorescent collagen substrates. UVA induced MMP-1 synthesis and activity were analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in skin fibroblasts. We also examined anti-inflammatory effects by the determination test of proinflammatory cytokine, interleukin 6 in HaCaT keratinocytes. Expression of prostaglandin E$_2$ (PGE$_2$) after UVB irradiation was measured by competitive enzyme immunoassay(EIA) using PGE$_2$ monoclonal antibody. In the human skin we tested anti-irritation effect on the SLS-induced damage skin after appling the extract containing emulsion. We found that Juniperus chinensis extract had potent radical scavenging effect by 98% at 100$\mu\textrm{g}$/mL. The extract of Juniperus chinensis showed strong inhibitory effect on MMP-1 activities by 97% at 100 $\mu\textrm{g}$/mL and suppressed the UVA induced expression of MMP-1 by 79% at 25$\mu\textrm{g}$/mL. This extract also showed strong inhibition on MMP-2 activity in UVA irradiated fibroblast by zymography. In the test of proinflammatory cytokines of human keratinocytes Juniperus chinensis extract decreased expression of interleukin 6 about 30%. The amount of PGE$_2$ by HaCaT keratinocytes was significantly increased at the doses of above 10 mJ/$\textrm{cm}^2$ of UVB (p < 0.05). At the concentrations of 3.2-25$\mu\textrm{g}$/mL of this extract, the production of PGE$_2$ by HaCaT keratinocytes (24 h after 10mJ/$\textrm{cm}^2$ UVB irradiation) was significantly inhibited in culture supernatants (p < 0.05). In SLS-induced skin irritation model in vivo, we found to reduce skin erythema and improve barrier recovery after appling Juniperus chinensis extract containing emulsion when compared to irritated non-treated and placebo-treated skin. Our results suggest that Juniperus chinensis extract can be effectively used for the prevention of UV and SLS-induced adverse skin reactions and applied as anti-aging and anti-irritation cosmetics.

Comparison of Anti-inflammatory Activities among Ethanol Extracts of Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus, and their Mixtures in RAW 246.7 Murine Macrophages (RAW 246.7 대식세포 모델에서 고삼, 감초, 백선피 에탄올 추출물 및 추출복합물의 항염증 효능 비교)

  • Han, Min Ho;Lee, Moon Hee;Hong, Su Hyun;Choi, Yung Hyun;Moon, Ju Sung;Song, Myung Kyu;Kim, Min Ju;Shin, Su Jin;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.329-335
    • /
    • 2014
  • Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus have been widely used in folk medicine for several inflammatory disorders in Korea and China. In this study, we compared the anti-inflammatory effects of the ethanol extracts of S. flavescens (EESF), G. uralensis (EEGU) and D. dasycarpus (EEDS), and their mixtures (medicinal herber mixtures, MHMIXs) on production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. Our data indicated that treatment with EESF, EEGU and EEDD significantly inhibited the excessive production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) in LPS-stimulated RAW 264.7 cells. The ethanol extracts and MHMIXs also attenuated the production of pro-inflammatory cytokines, including interleukin-$1{\beta}$ ($IL-1{\beta}$) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) by suppressing their protein expression, respectively. Interestingly, MHMIX-1, which basic ingredients are EESF, EEGU and EEDS in the proportion 3:1:1, more safely and effectively inhibits the LPS-induced inflammatory status in LPS-stimulated RAW 264.7 macrophages compared to ethanol extracts of each medicinal herb and other MHMIXs without causing any cytotoxic effects. Our study provides scientific evidence to support that a berbal mixture, MHMIX-1 may be useful in the treatment of inflammatory diseases by inhibiting inflammatory regulator responses in activated macrophages.

The Macrophage-Specific Transcription Factor Can Be Modified Posttranslationally by Ubiquitination in the Lipopolysaccharide-Treated Macrophages

  • Jung, Jae-Woo;Choi, Jae-Chol;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung-Whui;Shin, Jong-Wook;Christman, John William
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.2
    • /
    • pp.113-124
    • /
    • 2011
  • Background: Macrophages are one of the most important inflammatory cells in innate immunity. PU.1 is a macrophage-specific transcription factor. Ubiquitins are the ultimate regulator of eukaryotic transcription. The ubiquitination process for PU.1 is unknown. This study investigated the lipopolysaccharide (LPS)-induced activation of PU.1 and its relation to ubiquitins in the macrophages. Methods: Raw264.7 cells, the primary cultured alveolar, pulmonary, and bone marrow derived macrophages were used. The Raw264.7 cells were treated with MG-132, $NH_4Cl$, lactacytin and LPS. Nitric oxide and prostaglandin D2 and E2 were measured. Immunoprecipitation and Western blots were used to check ubiquitination of PU.1. Results: The PU.1 ubiquitination increased after LPS ($1{\mu}g$/mL) treatment for 4 hours on Raw264.7 cells. The ubiquitination of PU.1 by LPS was increased by MG-132 or $NH_4Cl$ pretreatment. Two hours of LPS treatment on macrophages, PU.1 activation was not induced nor increased with the inhibition of proteasomes and/or lysosomes. The ubiquitination of PU.1 was increased in LPS-treated Raw264.7 cells at 12- and at 24 hours. LPS-treated cells increased nitric oxide production, which was diminished by MG-132 or $NH_4Cl$. LPS increased the production of $PGE_2$ in the alveolar and peritoneal macrophages of wild type mice; however, $PGE_2$ was blocked or diminished in Rac2 null mice. Pretreatment of lactacystin increased $PGE_2$, however it decreased the $PGD_2$ level in the macrophages derived from the bone marrow of B57/BL6 mice. Conclusion: LPS treatment in the macrophages ubiquitinates PU.1. Ubiquitination of PU.1 may be involved in synthesis of nitric oxide and prostaglandins.