• Title/Summary/Keyword: Propulsion system

Search Result 2,458, Processing Time 0.027 seconds

A Review of Electric Ship Propulsion System (선박용 전기추진 장치의 기술동향)

  • 박정태
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.22-25
    • /
    • 2000
  • This paper introduces the ship propulsion system in different aspects. In fact there are many types to accomplish electric propulsion. The latest installations are based on fixed generator speed and motor speed control. The AC motor drive systems with synchroconverter cycloconverter PWM converter are chosen for the ship electric propulsion. The configurations of the ship electric propulsion. The configurationso of the ship electric propulsion system must be considered about following criteria : torque and speed performances redundancy cost harmonics available space and shape. This paper introduces possible configurations of the ship electric propulsion and the major and minor points.

  • PDF

First Bipropellant Propulsion System for Spacecraft in Korea

  • Han, Cho-Young;Chae, Jong-Won;Park, Eung-Sik;Baek, Myung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.307-310
    • /
    • 2008
  • In the framework of COMS(Communication, Ocean and Meteorological Satellite) programme, the first bipropellant propulsion system for GEO satellite has been developed successfully. So far Korea has its own experience of development of a monopropellant propulsion system for LEO satellites, i.e., KOMPSAT's. Other types of propulsion systems for a satellite, such as cold gas and electric propulsion etc., are being developed somewhere in Korea, however they are not commercialised yet, apart from those two systems aforementioned. This paper mainly focused on the design of the Chemical Propulsion System(CPS) for the COMS, joint scientific and communications satellite. It includes descriptions of the general system design and a summary of the supporting analysis performed to verify suitability for space flight. Essentially it provides an overview and guide to the various engineering rationale generated in support of the COMS CPS design activities. The manufacture and subsequent testing of COMS CPS are briefly discussed. Feasibility of COMS CPS to an interplanetary mission is proposed as well.

  • PDF

A Generalized Method applied to the Analysis on the Longitudinal Instability of Liquid Propulsion System (액체 추진기관 시스템 축방향불안정성 해석을 위한 동특성 모델링 일반화 기법)

  • Lee, Han-Ju;Kim, Ji-Hoon;Jung, Dong-Hoon;Oh, Seung-Hyub
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.424-427
    • /
    • 2008
  • The longitudinal instability (POGO) of the rocket should not be occurred during the whole flight time for the large class liquid propulsion system to complete a mission successfully. The longitudinal instability is caused by the resonance between the propulsion system and rocket structure in the low frequency range below 50Hz, ordinarily. We can consider various types of propulsion system in the early stage of rocket development. So the longitudinal instability analysis tool is needed for corresponding to each propulsion system. This article deals the generalized method applied to the analysis on the low frequency dynamic characteristics of various types of liquid propulsion system.

  • PDF

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

A CONSIDERATION OF MATHEMATICAL THERMAL MODELING OF BIPROPELLANT PROPULSION SYSTEM (이원추진제 추진시스템 수학적 열 모텔링 고찰)

  • Chae, J.W.;Han, C.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.163-165
    • /
    • 2007
  • The authors have reviewed many mathematical thermal mode lings of bipropellant propulsion system in literatures to gather basic data for developing a computer program which analyses the performance of bipropellant propulsion system. In this paper COMS and its propulsion system is briefly introduced for understanding. The set of first order nonlinear differential equations is reviewed and considered as candidate equations for the program development.

  • PDF

Development of the Remote Control System for Liquid Rocket Propulsion System (액체로켓 추진개관 원격제어시스템 개발)

  • 이주열;김재문;김영수;홍일희
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.207-210
    • /
    • 2003
  • The purpose of this work is to introduce the Remote Control System for KSR-III Liquid Rocket Propulsion System. We developed the high reliable Fire control System that needed for long distance control. We carried out a real time remote control and measuring for KSR-III lust Liquid Propulsion Rocket in Korea using TCP/IP Ethernet network method and Fiber-optic communication method. Also HMI operation program developed guarantee confidential control, monitoring and analysis for Fire control operation.

  • PDF

Thermal Analysis for Design of Propulsion System Employed in LEO Earth Observation Satellite

  • Han C.Y.;Kim J.S.;Lee K.H.;Rhee S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.248-250
    • /
    • 2003
  • Thermal analysis is performed to protect the propulsion system of low-earth-orbit earth observation satellite from unwanted thermal disaster like propellant freezing. To implement thermal design adequately, heater powers for the propulsion system estimated through the thermal analysis are decided. Based on those values anticipated herein, the average power for propulsion system becomes 22.02 watts when the only one redundant catalyst bed heater is turned on. When for the preparation of thruster firing, 25.93 watts of the average power is required. All heaters selected for propulsion components operate to prevent propellant freezing meeting the thermal requirements for the propulsion system with the worst-case average voltage, i.e. 25 volts.

  • PDF

Development of Monopropellant Propulsion System for Low Earth Orbit Observation Satellite

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Choi, Joon-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.61-70
    • /
    • 2005
  • The currently developed propulsion system(PS) is composed of propellant tank, valves, thrusters, interconnecting line assembly and thermal hardwares to prevent propellant freezing in the space environment. Comprehensive engineering analyses in the structure, thermal, flow and plume fields are performed to evaluate main design parameters and to verify their suitabilities concurrently at the design phase. The integrated PS has undergone a series of acceptance tests to verify workmanship, performance, and functionality prior to spacecraft level integration. After all the processes of assembly, integration and test are completed, the PS is integrated with the satellite bus system successfully. At present, the severe environmental tests have been carried out to evaluate functionality performances of satellite bus system. This paper summarizes an overall development process of monopropellant propulsion system for the attitude and orbit control of LEO(Low Earth Orbit) observation satellite from the design engineering up to the integration and test.

Launch Preparation and Launch-and-Early-Operations-Phase for COMS Propulsion System (천리안위성 추진계 발사 준비와 발사 및 초기운용)

  • Han, Cho-Young;Chae, Jong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.207-210
    • /
    • 2011
  • Chollian bipropellant propulsion system is composed of one main engine for orbit transfer and fourteen thrusters for on-station operations. The design and analyses of the propulsion system were carried out in the framework of international collaboration. Following the system integration and testings required, the Chollian was transported to Kourou Space Center in French Guiana and launched successfully. After it separated from the launcher, the propulsion system was initialised automatically. Then three times of main engine firing were successfully performed, and the target obit insertion was accomplished.

  • PDF

Design Process of Liquid-Propellant Propulsion System for Space Launch Vehicle (우주발사체용 액체추진시스템 설계 프로세스)

  • Kim Hui-Tae;Han Sang-Yeop;Lee Han-Ju;Cho Kie-Joo;Oh Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.147-150
    • /
    • 2005
  • Space launch vehicles mainly use the liquid-propellant propulsion system which has easy thrust control ability and high specific impulse for that the payload like satellite and spacecraft should be entered into exact orbit. However, the liquid-propellant propulsion system is very difficult to develop because it is more complicate than the solid rocket propulsion system and demands very high technology. In space launch vehicle developing procedure the system design level is very important thing to reduce cost, shorten schedule, and improve the performance. The system design process was introduced for selecting the best liquid-propellant propulsion system on this paper.

  • PDF