• Title/Summary/Keyword: Proportional Integral Observer

Search Result 49, Processing Time 0.026 seconds

Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1644-1651
    • /
    • 2022
  • This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).

자율주행 자동차의 전기적 파워 조향 시스템을 위한 제어 기법의 개관

  • Son, Yeong-Seop;Kim, Won-Hui;Jeong, Jeong-Ju
    • ICROS
    • /
    • v.21 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • 운전자에게 편의성을 제공하는 차량의 주행관련 Advanced driver assist system (ADAS)에는 차량의 종방향과 횡방향 운동에 대한 제어기가 요구된다. 횡방향 제어를 위해서는 조향 시스템의 조향각 제어가 요구되는데 최근 구조적으로 간단하고 연비향상, 차량의 중량 감소, 빠른 응답성을 가지고 있는 전기적 파워 조향 (Electric power steering, EPS) 시스템이 자동차 산업에서 널리 사용되고 있다. 차량의 주행관련 ADAS를 사용하여 자율 주행 시 EPS 시스템은 상위 제어기에서 계산된 필요한 조향각을 추종 할 수 있도록 조향 핸들의 각 제어를 해야 한다. 그러나 일반적인 EPS 시스템은 운전자가 조향 핸들에 인가된 토크를 보조해 줄 수 있는 토크를 출력해 준다. 본 논문에서는 이러한 문제를 해결하는 방법들을 설명한다. 먼저 EPS 시스템의 기본 기능에 대해서 설명을 하고, 자율 추행 차량을 위한 조항 핸들의 각 제어를 위한 proportional-integral 제어, 슬라이딩 모드 제어 (Sliding mode control), 관측기 기반 비선형 댐핑 제어(Observer based nonlinear damping control) 등과 같은 다양한 기법의 제어 알고리즘들에 대한 방법들이 고찰되었다.

  • PDF

Robust Control of Induction Motor with HTheory based on Loopshaping

  • Benderradji, Hadda;Chrifi-Alaoui, Larbi;Mahieddine-Mahmoud, Sofiane;Makouf, Abdessalam
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.226-232
    • /
    • 2011
  • The $H_{\infty}$ approach, adopted in this paper, is based on loop shaping using a normalized coprime factor combined with a field-oriented control to control induction motor. We develop two loops. The first one, the inner loop, controls the stator current by $H{\infty}$ controller in order to obtain good performance. The second loop, the outer one, guarantees stability and tracking performance of speed and rotor flux using a proportional integral controller. When the rotor flux cannot be measured, we introduce a flux observer to estimate the rotor flux. Simulation and experimental results are presented to validate the effectiveness and the good performance of this control technique.

Design of a Robust Position Tracking Controller for Flexible Joint Manipulator Using Motor Angle (모터 각도를 이용한 유연 관절 머니퓰레이터의 강인한 위치 추종 제어기 설계)

  • Lee, Sang-Myung;Kim, In-Hyuk;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1245-1247
    • /
    • 2014
  • This paper presents a robust position tracking controller for motor-driven flexible joint manipulators using only the motor angle measurement. The control problem is not easy because the link position is hard to estimate in the presence of parameter uncertainties. The proposed controller consists of a feedback linearization controller (FLC) and two proportional-integral observers (PIOs) that estimate both system states including the link position and an equivalent disturbance for compensating the parameter uncertainties. Comparative computer simulations are conducted to demonstrate the effectiveness of the proposed control algorithm.

Model-Free Torque Control of Rotary Electro-Hydraulic Actuator using Mechanical Impedance Reduction (기계임피던스 감소기법을 이용한 회전형 전기-유압식 구동기의 모델 없는 토크제어방법)

  • Lee, Woongyong;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • This paper proposes a simple and intuitive model-free torque-tracking control for rotary electro-hydraulic actuators. The undesirable natural-velocity-feedback effect is discussed by introducing mechanical impedance into the electro-hydraulic actuation system. The proposed model-free torque control comprises inner- and outer-loop control to achieve two control objectives. Inner-loop control reduces the mechanical impedance passively and optimally. To improve the tracking accuracy, a certain form of proportional-integral-derivative control is applied to the outer loop. The robustness of the proposed closed-loop system against external disturbances is demonstrated by transforming the two-loop control structure into a disturbance observer form. The proposed method is validated on a single joint electro-hydraulic actuator.

The study of Direct Torque Controlled BLDC Motor Drive with Sinusoidal EMF (정현파 역기전력을 갖는 BLDC의 직접토크 제어에 관한 연구)

  • Kim J.S.;Kim C.U.;Cho S.E.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.1-5
    • /
    • 2004
  • This paper describe a control scheme for direct torque control of BLDC Motor. The proposed Luenberger Observer scheme calculate flux errors in order to control the torque and flux more correctly. This proposed control scheme has not the requirement of a separate current regulator and proportional-integral (PI) control of the flux and torque, there by improving transient performance and also has the advantage of less torque ripple in steady state with a fixed switching period. The effect of proposed method has been proven by simulations.

  • PDF

A Novel Technique to Minimize Gain-Transient Time of WDM signals in EDFA

  • Shin, Seo-Yong;Kim, Dae-Hoon;Kim, Sung-Chul;Lee, Sang-Hun;Song, Sung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.174-177
    • /
    • 2006
  • We propose a new technique to minimize gain-transient time of wavelength-division-multiplexing (WDM) signals in erbium-doped fiber amplifiers (EDFA) in channel add/drop networks. We have dramatically reduced the gain-transient time to less than $3{\mu}sec$ by applying, for the first time to our knowledge, a disturbance observer with a proportional/integral/differential (PID) controller to the control of EDFA gain. The $3{\mu}sec$ gain-transient time is the fastest one ever reported and it is approximately less than 1.5% of $200{\mu}sec$ gain-transient time of commercially available EDFAs for WDM networks. We have demonstrated the superiority of the new technique by performing the simulation with a numerical modeling software package such as the $Optsim^{TM}$.

High-Performance Tracking Controller Design for Rotary Motion Control System (회전운동 제어시스템을 위한 고성능 추적제어기의 설계)

  • Kim, Youngduk;Park, Su Hyeon;Ryu, Seonghyun;Song, Chul Ki;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.43-51
    • /
    • 2021
  • A robust tracking controller design was developed for a rotary motion control system. The friction force versus the angular velocity was measured and modeled as a combination of linear and nonlinear components. By adding a model-based friction compensator to a nominal proportional-integral-derivative controller, it was possible to build a simulated control system model that agreed well with the experimental results. A zero-phase error tracking controller was selected as the feedforward tracking controller and implemented based on the estimated closed-loop transfer function. To provide robustness against external disturbances and modeling uncertainties, a disturbance observer was added in the position feedback loop. The performance improvement of the overall tracking controller structure was verified through simulations and experiments.

Control of Inertially Stabilized Platform Using Disturbance Torque Estimation and Compensation (외란토크 추정 및 보상을 이용한 관성안정화 플랫폼의 제어)

  • Choi, Kyungjun;Won, Mooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this study, we propose a control algorithm for Inertially Stabilized Platforms (ISP), which combines Disturbance Observer (DOB) with conventional proportional integral derivative (PID) control algorithm. A single axis ISP system was constructed using a direct drive motor. The joint friction was modeled as a nonlinear function of joint speed while the accuracy of the model was verified through experiments and simulation. In addition, various Q-filters, which have different orders and relative degrees of freedom (DOF), were implemented. The stability and performance of the ISP were compared through experimental study. The performance of the proposed PID-plus-DOB algorithm was compared with the experimental results of the conventional double loop PID control under artificial vehicle motion provided motion simulator with six DOF.