• Title/Summary/Keyword: Proportional Integral

Search Result 582, Processing Time 0.027 seconds

The PV System Modeling Based on the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 태양광발전(PV) 모델링에 관한 연구)

  • Jeon, Jintaek;Rho, Daeseok;Kim, Chanhyeok;Wang, Yongpeel
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.3
    • /
    • pp.15-23
    • /
    • 2011
  • This paper deals with the analysis for the operation characteristic of PV 3 phase inverter, considering the state equation through d-q coordinates transformation, and proposes an algorithm of controlling current using PI(Proportional Integral) controller to control the output and the theory algorithm of sinusoidal PWM method to design inverter. And also this paper performs PV modelling using PSCAD/EMTDC S/W which is commonly used in analysis of distribution system and confirms effectiveness of the modelling proposed in this paper by analyzing and comparing the EMTDC/PSCAD simulation result with the theoretical method.

Differential Evolution Approach for Performance Enhancement of Field-Oriented PMSMs

  • Yun, Hong Min;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2301-2309
    • /
    • 2018
  • In a field-oriented vector-controlled permanent magnet synchronous motor (PMSM) control system, the d-axis current control loop can offer a free degree of freedom which can be used to improve control performances. However, in the industry the desired d-axis current command is usually set as zero without using the free degree of freedom. This paper proposes a method to use the degree of freedom for control performance improvement. It is assumed that both the inner loop proportional-integral (PI) current controller and the q-axis outer loop PI speed controller are tuned by the well-known tuning rules. This paper gives an optimal d-axis reference current command generator such that some useful performance indexes are minimized and/or a tradeoff between conflicting performance criteria is made. This paper uses a differential evolution algorithm to autotune the parameter values of the optimal d-axis reference current command generator. This paper implements the proposed control system in real time on a Texas Instruments TMS320F28335 floating-point DSP. This paper also gives experimental results showing the practicality and feasibility of the proposed control system, along with simulation results.

Least Squares Based PID Control of an Electromagnetic Suspension System

  • Park, Yon-Mook;Tahk, Min-Jea;Nam, Myeong-Ryong;Seo, In-Ho;Lee, Sang-Hyun;Lim, Jong-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.69-78
    • /
    • 2003
  • In this paper, we develop the so-called functional test model for magnetic bearing wheels. The functional test model developed in this paper is a kind of electromagnetic suspension systems and has three degree of freedom, which consists of one axial suspension from gravity and the other two axes gimbaling capability to small angle, and does not include the motor. For the control of the functional test model, we derive the optimal electromagnetic forces based on the least squares method, and use the proportional-integral derivative controller. Then, we develop a hardware setup, which mainly consists of the digital signal processor and the 12-bit analog-to-digital and digital-to-analog converters, and show the experimental results.

Electrohydraulic Pump-Driven Closed-Loop Blood Pressure Regulatory System

  • Ahn, Jae-Mok
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.449-454
    • /
    • 2007
  • An electrohydraulic (EH) pump-driven closed-loop blood pressure regulatory system was developed based on flow-mediated vascular occlusion using the vascular occlusive cuff technique. It is very useful for investigating blood pressure-dependant physiological variability, in particular, that could identify the principal mediators of renal autoregulation, such as tubuloglomerular feedback (TGF) and myogenic (MYO), during blood pressure regulation. To address this issue, renal perfusion pressure (RPP) should be well regulated under various experimental conditions. In this paper, we designed a new EH pump-driven RPP regulatory system capable of implementing precise and rapid RPP regulation. A closed-loop servo-controlwas developed with an optimal proportional plus integral (PI) compensation using the dynamic feedback RPP signal from animals. An in vivo performance was evaluated in terms of flow-mediated RPP occlusion, maintenance, and release responses. Step change to 80 mmHg reference from normal RPP revealed steady state error of ${\pm}3%$ during the RPP regulatory period after PI action. We obtained rapid RPP release time of approximately 300 ms. It is concluded that the proposed EH RPP regulatory system could be utilized in in vivo performance to study various pressure-flow relationships in diverse fields of physiology, and in particular, in renal autoregulation mechanisms.

Motion Synchronization of Control for Multi Electro-Hydraulic Actuators (가변구조제어기를 이용한 다중실린더 위치동조 제어)

  • Kim, Seong-Hoon;Seo, Jeong-Uk;Yoon, Young-Won;Park, Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.863-868
    • /
    • 2011
  • This paper presents a method to achieve a synchronous positioning objective for a dual-cylinder electro-hydraulic system with friction characteristics. The control system consists of a VSC (Variable Structure Controller) for each of the hydraulic cylinders and a PID (Proportional-Integral-Derivative) feedback controller. The PID controller is used for controlling the non-synchronous error generated by both cylinders when motion synchronization is carried out. To enhance the position-tracking performance of the individual cylinders friction characteristics is modeled in model, based on the estimated friction force. The simulation and experimental results show that the proposed method can effectively achieve the objective of position synchronization in the dualcylinder electro-hydraulic system, with maximum synchronization error with ${\pm}2\;mm$.

Development of Control System for Ultrasonic Spray Pyrolysis Deposition (초음파 분무 열분해 증착 제어 시스템 개발)

  • Kim, Kyu-Eon;Kim, Yeong-Heum;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.385-391
    • /
    • 2014
  • A control system for ultrasonic spray pyrolysis deposition was developed that can coat a large size glass panel with a transparent conductive oxide. It consists of several ultrasonic atomizer devices to cover a large area and a host computer for individually controlling the devices. The sub-controller in an ultrasonic atomizer device can adjust the flow rate of the atomized conductive oxide gas by setting the flow rate of the solution and regulating the level of the solution in the tank. To construct a feedback control loop for level regulation, a level sensor that utilized an infrared distance sensor and an electric circuit for adjusting the ultrasonic oscillator were developed. The host program was also developed, which can monitor and control the sub-controllers. A proportional-integral controller was developed for a simplified model, and its operation was verified through an experiment.

Multiobjective PI/PID Control Design Using an Iterative Linear Matrix Inequalities Algorithm

  • Bevrani, Hassan;Hiyama, Takashi
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.117-127
    • /
    • 2007
  • Many real world control systems usually track several control objectives, simultaneously. At the moment, it is desirable to meet all specified goals using the controllers with simple structures like as proportional-integral (PI) and proportional-integral-derivative (PID) which are very useful in industry applications. Since in practice, these controllers are commonly tuned based on classical or trial-and-error approaches, they are incapable of obtaining good dynamical performance to capture all design objectives and specifications. This paper addresses a new method to bridge the gap between the power of optimal multiobjective control and PI/PID industrial controls. First the PI/PID control problem is reduced to a static output feedback control synthesis through the mixed $H_2/H_{\infty}$ control technique, and then the control parameters are easily carried out using an iterative linear matrix inequalities (ILMI) algorithm. Numerical examples on load-frequency control (LFC) and power system stabilizer (PSS) designs are given to illustrate the proposed methodology. The results are compared with genetic algorithm (GA) based multiobjective control and LMI based full order mixed $H_2/H_{\infty}$ control designs.

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.

PSO based tuning of PID controller for coupled tank system

  • Lee, Yun-Hyung;Ryu, Ki-Tak;Hur, Jae-Jung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1297-1302
    • /
    • 2014
  • This paper presents modern optimization methods for determining the optimal parameters of proportional-integral-derivative (PID) controller for coupled tank systems. The main objective is to obtain a fast and stable control system for coupled tank systems by tuning of the PID controller using the Particle Swarm Optimization algorithm. The result is compared in terms of system transient characteristics in time domain. The obtained results using the Particle Swarm Optimization algorithm are also compared to conventional PID tuning method like the Ziegler-Nichols tuning method, the Cohen-Coon method and IMC (Internal Model Control). The simulation results have been simulated by MATLAB and show that tuning the PID controller using the Particle Swarm Optimization (PSO) algorithm provides a fast and stable control system with low overshoot, fast rise time and settling time.

Optimal Parameter Tuning to Compensate for Radius Errors (반경오차 보정을 위한 최적파라미터 튜닝)

  • 김민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.629-634
    • /
    • 2000
  • Generally, the accuracy of motion control systems is strongly influenced by both the mechanical characteristics and servo characteristics of feed drive systems. In the fed drive systems of machine tools that consist of mechanical parts and electrical parts, a torsional vibration is often generated because of its elastic elements in torque transmission. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed drive system. In this paper, based on the simplifies feed drive system model, radius errors due to position gain mismatch and servo response characteristic have been developed and an optimal criterion for tuning the gain of speed controller is discussed. The proportional and integral parameter gain of the feed drive controller are optimal design variables for the gain tuning of PI speed controller. Through the optimization problem formulation, both proportional and integral parameter are optimally tuned so as to compensate the radius errors by using the genetic algorithm. As a result, higher performance on circular profile tests has been achieved than the one with standard parameters.

  • PDF