• 제목/요약/키워드: Property ($C_k$)

검색결과 3,018건 처리시간 0.031초

WIENER-HOPF C*-ALGEBRAS OF STRONGL PERFORATED SEMIGROUPS

  • Jang, Sun-Young
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1275-1283
    • /
    • 2010
  • If the Wiener-Hopf $C^*$-algebra W(G,M) for a discrete group G with a semigroup M has the uniqueness property, then the structure of it is to some extent independent of the choice of isometries on a Hilbert space. In this paper we show that if the Wiener-Hopf $C^*$-algebra W(G,M) of a partially ordered group G with the positive cone M has the uniqueness property, then (G,M) is weakly unperforated. We also prove that the Wiener-Hopf $C^*$-algebra W($\mathbb{Z}$, M) of subsemigroup generating the integer group $\mathbb{Z}$ is isomorphic to the Toeplitz algebra, but W($\mathbb{Z}$, M) does not have the uniqueness property except the case M = $\mathbb{N}$.

알루미늄 분말 합금의 반응고 미세조직 특성 연구 (A Study on the Characteristics of Microstructures in the Semi-solid State of Aluminum Powder Alloys)

  • 이상용
    • 열처리공학회지
    • /
    • 제21권4호
    • /
    • pp.205-212
    • /
    • 2008
  • Characteristics of microstructures, mechanical properties and formability of two Al-20Si-5Fe-2Ni alloys produced by gas atomizing (P/M) and spray forming (S/F) respectively were compared at temperatures up to $560^{\circ}C$. Room temperature hardness values and tensile strengths of both alloys were increased in accordance with temperature after heat treatment above $300^{\circ}C$. The highest values of hardness and tensile strength of both alloys were obtained at $490^{\circ}C$. It was interpreted that increase in hardness and tensile strength according to heating temperature between $300{\sim}490^{\circ}C$ was mainly related to increase in internal stress between Al matrix and reprecipitated particles. S/F alloys showed better formability and wear property than P/M alloys due to the homogenity of microstructures above $300^{\circ}C$.

ORBITAL SHADOWING PROPERTY

  • Honary, Bahman;Bahabadi, Alireza Zamani
    • 대한수학회보
    • /
    • 제45권4호
    • /
    • pp.645-650
    • /
    • 2008
  • Let M be a generalized homogeneous compact space, and let Z(M) denotes the space of homeomorphisms of M with the $C^0$ topology. In this paper, we show that if the interior of the set of weak stable homeomorphisms on M is not empty then for any open subset W of Z(M) containing only weak stable homeomorphisms the orbital shadowing property is generic in W.

유동층 화학기상증착법을 이용하여 제조된 열분해 탄화규소의 특성에 미치는 증착온도의 영향 (Effect of Deposition Temperature on the Property of Pyrolytic SiC Fabricated by the FBCVD Method)

  • 김연구;김원주;여승환;조문성
    • 한국분말재료학회지
    • /
    • 제21권6호
    • /
    • pp.434-440
    • /
    • 2014
  • Silicon carbide(SiC) layer is particularly important tri-isotropic (TRISO) coating layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO coated particle. The high temperature deposition of SiC layer normally performed at $1500-1650^{\circ}C$ has a negative effect on the property of IPyC layer by increasing its anisotropy. To investigate the feasibility of lower temperature SiC deposition, the influence of deposition temperature on the property of SiC layer are examined in this study. While the SiC layer coated at $1500^{\circ}C$ obtains nearly stoichiometric composition, the composition of the SiC layer coated at $1300-1400^{\circ}C$ shows discrepancy from stoichiometric ratio(1:1). $3-7{\mu}m$ grain size of SiC layer coated at $1500^{\circ}C$ is decreased to sub-micrometer (< $1{\mu}m$) $-2{\mu}m$ grain size when coated at $1400^{\circ}C$, and further decreased to nano grain size when coated at $1300-1350^{\circ}C$. Moreover, the high density of SiC layer (${\geq}3.19g/cm^3$) which is easily obtained at $1500^{\circ}C$ coating is difficult to achieve at lower temperature owing to nano size pores. the density is remarkably decreased with decreasing SiC deposition temperature.

중간가공열처리한 AI-Li계 합금의 인장성질에 미치는 용체화처리온도의 영향 (The Effect of Solid Solution Heat-Treatment Temperature on the Tensile Property in Intermediate Thermo-Mechanical Treated Al-Li Alloys)

  • 유창영;이규복
    • 열처리공학회지
    • /
    • 제4권1호
    • /
    • pp.37-41
    • /
    • 1991
  • In this study, the effect of solution treatment temperature on the tensile property in intermediate thermo-mechanical treated Al-Li alloys are investigated. After the intermediate thermo-mechanical treated Al-Li, Al-Li-Mg and Al-Li-Mg-Zr alloys were solution treated at various temperatures (500, 520 and $540^{\circ}C$), these were aged at $190^{\circ}C$, $240^{\circ}C$ and tested tensile properties. The results obtained from the experiment are as follows ; 1) The optimum solution heat-treatment temperature is $540^{\circ}C$ for a Al-Li alloy, and the recrystallized grain size is about $70{\mu}m$. 2) The optimum solution heat-treatment temperature is $500^{\circ}C$ for a Al-Li-Mg alloy, and the recrystallized grain size is the most coarse in all alloys. 3) The tensile property is independent of the solution treatment temperature in a Al-Li-Mg-Zr alloy, and the recrystallized grain size is the finest owing to addition of Zr.

  • PDF

COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT

  • Han, Sang-Eon
    • 호남수학학술지
    • /
    • 제37권1호
    • /
    • pp.135-147
    • /
    • 2015
  • Owing to the notion of a normal adjacency for a digital product in [8], the study of product properties of digital topological properties has been substantially done. To explain a normal adjacency of a digital product more efficiently, the recent paper [22] proposed an S-compatible adjacency of a digital product. Using an S-compatible adjacency of a digital product, we also study product properties of digital topological properties, which improves the presentations of a normal adjacency of a digital product in [8]. Besides, the paper [16] studied the product property of two digital covering maps in terms of the $L_S$- and the $L_C$-property of a digital product which plays an important role in studying digital covering and digital homotopy theory. Further, by using HS- and HC-properties of digital products, the paper [18] studied multiplicative properties of a digital fundamental group. The present paper compares among several kinds of adjacency relations for digital products and proposes their own merits and further, deals with the problem: consider a Cartesian product of two simple closed $k_i$-curves with $l_i$ elements in $Z^{n_i}$, $i{\in}\{1,2\}$ denoted by $SC^{n_1,l_1}_{k_1}{\times}SC^{n_2,l_2}_{k_2}$. Since a normal adjacency for this product and the $L_C$-property are different from each other, the present paper address the problem: for the digital product does it have both a normal k-adjacency of $Z^{n_1+n_2}$ and another adjacency satisfying the $L_C$-property? This research plays an important role in studying product properties of digital topological properties.

알루미늄청동의 합금성분 및 냉각속도에 따른 특성변화에 관한 연구 (A Study on the Change of Properties of Al-bronze Due to Alloy Elements and Cooling Rate.)

  • 정운재;김헌주;김동옥;윤의박
    • 한국주조공학회지
    • /
    • 제8권3호
    • /
    • pp.271-281
    • /
    • 1988
  • Al-bronze has a good mechanical property, corrosion resistance and castability, so being highlighted for the new copper alloy. So, effects of alloy composition and cooling rate in the mechaincal properties and solidification behavior have been investigated. The results obtained are as follows; 1) Change in volume on solidification is larger in metal mold casting than in sand mold casting. And it decreases by the addition of Al. 2) The mechanical property in metal mold casting is superior to the one in sand mold casting, and the inclination is obvious up to 9% Al, after heat-treatment ($885^{\circ}C$, $1.5hrs\;{\rightarrow}\;W\;{\cdot}\;Q\;{\rightarrow}\;540^{\circ}C$, 3hrs) 3) By adding Al, the mechanical property is slightly increased up to 9% Al, Above 9% Al, it is increased rapidly, and is accelerated by adding Fe. 4) Cooling rate and hardness, and grain size and cooling rate are related as follows in the range of $1100^{\circ}C$ to $1200^{\circ}C$ pouring temperature. Grain size(${\mu}m$)=$929.6422{\times}cooling\;rate(^{\circ}C\;/\;sec)^{-0.51537}$ Hardness(BHN)=$765.45713{\times}grain\;size({\mu}m)^{-0.31058}$.

  • PDF

EFFECTS OF TEMPERING AND PWHT ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SA508 GR.4N STEEL

  • Lee, Ki-Hyoung;Jhung, Myung Jo;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.413-422
    • /
    • 2014
  • Presented in this study are the variations of microstructures and mechanical properties with tempering and Post-Weld Heat Treatment (PWHT) conditions for SA508 Gr.4N steel used as Reactor Pressure Vessel (RPV) material. The blocks of model alloy were austenitized at the conventional temperature of $880^{\circ}C$ then tempered and post-weld heat treated at four different conditions. The hardness and yield strength decrease with increased tempering and PWHT temperatures, but impact toughness is significantly improved, especially in the specimens tempered at $630^{\circ}C$. The sample tempered at $630^{\circ}C$ with PWHT at $610^{\circ}C$ shows optimum mechanical properties in hardness, strength, and toughness, excluding only the transition property in the low temperature region. The microstructural observation and quantitative analysis of carbide size distribution show that the variations of mechanical properties are caused by the under-tempering and carbide coarsening which occurred during the heat treatment process. The introduction of PWHT results in the deterioration of the ductile-brittle transition property by an increase of coarse carbides controlling cleavage initiation, especially in the tempered state at $630^{\circ}C$.

Thermal Property Measurement of Swine Atrium

  • ;김지연
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권5호
    • /
    • pp.343-347
    • /
    • 2008
  • Thermal conductivity, thermal diffusivity were measured in the atrium of a swine heart. Radiofrequency (RF) catheter ablation in an atrium has rapidly emerged at the treatment of symptomatic reentrant arrhythmia associated with accessory pathway or Atrioventricular (AV) node conduction. The thermal properties of an atrium are definitely necessary for these treatments because, in thermal treatments, conductivity and diffusivity are significant factors in the relationship between the applied RF power and the resulting atrium temperature rise. Thermal properties were measured using a self-heated thermistor probe. Thermistor probes were inserted into the tissue of interest and were used to supply heat within the tissue as well as to monitor the temperature rise in the tissue. The measurements were performed at temperatures of 25, 37, $50^{\circ}C$. Atrium thermal conductivity ranged from 5.17$\pm$0.12 mW/cm$^{\circ}C$ at $25^{\circ}C$ to 5.33$\pm$0.08 mW/cm$^{\circ}C$ at $37^{\circ}C$. Atrium thermal diffusivity ranged from 0.00132$\pm$0.00007$cm^2$/sec at $25^{\circ}C$ to 0.00138$\pm$0.00003 $cm^2$/sec at $50^{\circ}C$. This paper also present the thermal property comparison of both chambers of a heart (ventricle and atria).