• Title/Summary/Keyword: Propeller test equipment

Search Result 10, Processing Time 0.02 seconds

An Experimental Study for Construction of Aerodynamic Database of the Commercial Propeller (상용 프로펠러 공력 데이터베이스 구축을 위한 실험적 연구)

  • Shim, HoJoon;Kim, Geon-Hong;Cheon, HyeJin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.60-71
    • /
    • 2021
  • Propeller performance measurement system for commercial propeller was designed and applied to the wind tunnel test for 3 commercial propeller models with diameters of 30 inch. The thrust and torque of the propeller was directly measured by using 6-components balance installed on the rotating axis. The measurement system was validated by using wind tunnel balance calibration equipment. Propeller test stand including measurement and rotating system was validated by using QTP propeller. In the hovering condition, we compared the performance test results and the specifications of the commercial propeller provided by the manufacturer and confirmed that there are differences in the thrust and the torque. We measured the propeller performance with various wind speeds, propeller models and angles of attack and was summarized by thrust coefficients. We confirmed that the trend of the thrust coefficients was different in the low angle of attack and high angle of attack. An aerodynamics database that can be used for future aerodynamic design of an unmanned aerial vehicle was secured.

Development of Coaxial Propeller Test Facility and Experimental Study on Hover Performance Characteristics for Drone (드론용 동축 프로펠러 시험장치 개발 및 제자리비행 성능특성에 대한 실험적 연구)

  • Song, Youn-Ha;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • In this paper, the test facility for coaxial propellers at low Reynolds developed and validated by measured data. The test equipment was designed to measure the hovering performance of propellers according to distances between the upper/lower propellers. Thrust, torque, rotational speed, vibration, and amperage of upper and lower propellers can be measured separately. The data acquisition system was built to collect signals of sensors, and LabVIEW software was used to control the motor and collect the signal. The hover performance tests of single propellers were preceded for the facility validation, and then the performance values of coaxial propellers were measured according to distances and diameter differences between the upper/lower propellers. The results showed that the high efficiency is achieved at 20%~30% distance between the upper propeller and lower one. The configuration that the upper propeller has shorter diameter than the lower one has the highest efficiency than other configuration.

Development of Environmental Test Specifications for Aircraft Using Measured Vibration Data (항공기 실측 진동 데이터를 이용한 환경시험 규격 생성 연구)

  • Kim, Choonghyun;Song, Keehyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.302-308
    • /
    • 2021
  • Developers generally use test standards suggested by military standards such as MIL-STD-810G when performing vibration tests in the materiel development. However, according to MIL-STD-810G, it is recommended to test by tailoring the test standard suitable for the developed materiel, and it is specified to apply the suggested test standard only when there is difficulty in tailoring. In addition, the test standards presented by MIL-STD-810G are standards created under operating conditions different from the actual operating environment of each developed materiel, so the test according to this standard may be excessive or understated. Therefore, the developer must create an appropriate vibration test standard for the developed materiel as similar to the operating conditions as possible. In this paper, the procedure for creating the functional test standard and durability test standard suitable for the operating environment of the equipment to be mounted on the propeller aircraft under development is described, and the created standard is introduced.

Study of the Self-Propulsion Test and Analysis for a Pumpjet Propulsor in LCT (대형 캐비테이션터널에서 펌프젯 추진기 자항성능 시험 및 해석 기법 연구)

  • Ahn, Jong-Woo;Seol, Han-Shin;Jung, Hong-Seok;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.271-279
    • /
    • 2022
  • In order to study the self-propulsion test and analysis techniques for the submerged body with pumpjet propulsors in the Large Cavitation Tunnel (LCT), at the Korea Research Institute of Ships and Ocean Engineering, a set of test equipment was designed and manufactured. The pumpjet propulsor is composed of rotor, stator and duct which results in the strong interaction between the components. To measure the thrust and torque for duct and stator, a ring-shaped sensor was applied. The test equipment including pumpjet is installed on the stern of the submerged body. As the whole pumpjet including duct and stator was considered as the propulsor from pumpjet open-water test, the self-propulsion test was conducted in the same way. The total thrust, combined thrust of rotor, duct and stator was used for the pumpjet self-propulsion test analysis. Accordingly, the self-propulsion test and analysis were conducted in the same way as those of the conventional propeller. The full-scale performances of the pumpjet propulsor were compared with those of the reference propeller. On the basis of the present study, it is thought that the pumpjet propulsor would be designed optimally.

Improvement of Fatigue Life and Vibrational Characteristics of Composite Material Propeller Shaft of Vehicle (수송기계용 복합재료 추진축의 피로수명 및 진동특성 향상에 관한 연구)

  • 공창덕;정진호;정종철;김기범
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.104-117
    • /
    • 1999
  • The Composite materials has been used in the field of high technology industry because of high specific stiffness and high specific strength. Specially, the composite materials has been widely applied to the field of the aircraft and the transportation by the effectiveness of light weight due to low specific weight and reduction of the parts due to bonding, molding and so on. These advantages about the composite have led to study and apply in the transmission shaft for the aircraft and the drive shaft for the automobile. The composite material propeller shaft with the high vibrational stability was designed and analyzed. In order to verify the analysis, two types of experimental test which are the FFT analyzer with impact hammer and the rotational equipment were applied.

  • PDF

Evaluation of Vibration Fatigue Life of Shipboard Equipment Made of Aluminum Alloy A356 (주조 알루미늄합금 A356을 사용한 해상구조물의 진동피로수명평가)

  • Cho, Ki-Dae;Kim, Jie-Eok;Yang, Sung-Chul;Jung, Hwa-Young;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1257-1263
    • /
    • 2010
  • The naval structure exposes to environmental vibration of shafted propeller propulsion and engine vibration. The shipboard equipments are developed compliance to MIL-STD-167-1A. For this purpose, vibration fatigue life of shipboard equipment for long lives should be estimate via an analytical approach and vibration test. In this paper, High cycle fatigue strength of cast aluminum alloy A356 using shipboard equipment was evaluated by 14 S-N method. The stress applied on the structure is evaluated by an analytical method(frequency response analysis with sinusoidal input and a fatigue evaluation) to simulate a MIL-STD-167-1A test. The frequency with the maximum equivalent stress is shown by Max. test frequency and the vibration fatigue life of shipboard equipment was estimated by Miner's rule.

Study of the Open-Water Test and Analysis for a Pumpjet Propulsor in LCT (대형 캐비테이션터널에서 펌프젯 추진기 단독성능 시험 및 해석 기법 연구)

  • Ahn, Jong-Woo;Seol, Han-Shin;Jung, Hong-Seok;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.149-156
    • /
    • 2022
  • In order to study the open-water test and analysis techniques for pumpjet propulsors in the Large Cavitation Tunnel (LCT), at the Korea Research Institute of Ships and Ocean Engineering, a set of test equipment was designed and manufactured. The pumpjet propulsor is composed of rotor, stator and duct resulting in the strong interaction between the components. A ring-shaped sensor was developed to measure the thrust and torque for duct and stator. The test equipment including the pumpjet is installed on an existing POW dynamometer in the reverse direction. The results from the reverse POW test setup were validated against those from the conventional POW test setup in the Towing Tank (TT) as well as in the LCT. The pumpjet open-water test was conducted at the Reynolds number of around 1.0×106, at which the obtained experimental data became stable in the Reynolds number effect test. The open-water test for the rotor (rotor-only) was conducted to study whether the duct and stator should be considered as a part of the hull or the propulsor. On the basis of the test results, it was shown that the duct and stator could be included in the propulsor. The total thrust, combined thrust of rotor, duct, and stator was used for the pumpjet open-water test analysis. As the whole pumpjet is defined as a propulsor, it is thought that the self-propulsion test and analysis could be conducted in the same way as that of the conventional propeller.

Study on the Estimation of Autonomous Underwater Vehicle's Maneuverability Using Vertical Planar Motion Mechanism Test in Self-Propelled Condition (자항상태 VPMM 시험을 통한 무인잠수정 조종성능 추정에 관한 연구)

  • Park, Jongyeol;Rhee, Shin Hyung;Lee, Sungsu;Yoon, Hyeon Kyu;Seo, Jeonghwa;Lee, Phil-Yeob;Kim, Ho Sung;Lee, Hansol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The present study aims to improve the accuracy of the maneuvering simulations based on captive model test results. To derive the hydrodynamic coefficients in a self-propelled condition, a mathematical maneuvering model using a whole vehicle model was established. Captive model tests were carried out using the Vertical Planar Motion Mechanism (VPMM) equipment. A motor controller was used to control the constant propeller revolution rate during pure motion tests. The resistance tests, self-propulsion tests, static drift tests, and VPMM tests were performed in the towing tank of Seoul National University. When the vertical drift angle changes, the gravity load on the sensors were changed. The hydrodynamic forces were deduced by subtracting the gravity load from the measured forces. The hydrodynamic coefficients were calculated using the least-square method. The simulation of the turning circle test was compared with the free-running model test result, and the error of the turning radius was 8.3 % compared to the free-running model test.

Remodeling of tuna purse seiner for improving fishing performance (조업성능 향상을 위한 선망선 개선)

  • Hong, Jin-Keun;Kang, Il-Kwon;Jeong, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.4
    • /
    • pp.435-442
    • /
    • 2011
  • In an attempt to respond to the increase in international oil prices and reduce operating expenses, ship remodeling was carried out on a 740ton class tuna purse seiner. To strengthen the competitiveness of the fisheries industry by improving vessel performance, a bulbous bow was newly equipped. The slipway and rudder area were also lengthened and enlarged with the propeller and main engine remained unchanged. To reduce the hull resistance, a circle type bulbous bow was attached on the hull behind bow thruster and thus the cost for exchanging electrical equipment for bow thruster was reduced. The new rudder area was expanded 15% more than the old one within the extent that the existing mechanical control part and rudder stock were not changed. To prevent fishing net damage and stabilize wake field, slipway was lengthened to the optimal position. All of the new design of remodeling parts went through the model tests in towing tank and CWC. Besides resistance test, all of necessary model test results were delivered for hydrodynamic character for the modified ship. The maneuvering simulation to verify that the remodeled ship satisfies the IMO rules was performed in both zigzag and turning tests. The estimated resistance with new bulbous bow and lengthened stern was reduced by 4.8% in the 2-dimensional analysis and 17.4% in the 3-dimensional analysis in comparison of conventional ship. The average reduction of resistance was estimated about 10%. Maneuvering character of modified hull form was found to satisfy all regulations under IMO. The remodeling of tuna purse seiner can not only improve fishing performance but also contribute to reduction of operating cost by saving energy for the fisheries industry.

Operating status of Korean coastal composite fishing boats by the questionnaire survey (설문조사를 통한 우리나라 연안복합어선의 조업 실태)

  • HWANG, Bo-Kyu;CHANG, Ho-Young;KIM, Min-Son
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.4
    • /
    • pp.324-332
    • /
    • 2018
  • We conducted a questionnaire survey to analyze the current status of the coastal composite fisheries, as well as the improvement point in designing a new type coastal composite fishing boat suitable for Korean fishing environments from April to August 2017. The questionnaire composed of 20 questions about the features of the coastal composite fishing boat and fishing work. The survey sites were selected to cover all parts of the country by considering the geographical position. The significance testing for the response results was accessed by ${\chi}^2$ test and ANOVA. The results revealed that more than half (59.1%) of the fishermen operated one day per voyage and operating alone topped with 22.5% in the number of crews, followed by 2 persons (20.3%) and 5 persons (22.1%). The navigation devices had a high rate of installation and GPS plotter ranked first in the devices. In addition, fish finder ranked first in fishing equipment, followed by net hauler. The most inconvenient work that they felt during the fishing operation was fish handing at 49.8% and other general fishing works like setting and hauling line, deck cleaning accounted for about 25%. The hardest work was the accident by ropes wrapped around propeller and the engine trouble came in second. The most inconvenient facilities to the present design of fishing boat was wheelhouse (76.7%), followed by fish hold (38.5%), and deck (35.1%). Furthermore, inconvenient points related to the movement of fishing gear, noise and vibration of engine, slippery deck and small fish hold exceeded 50%.