• Title/Summary/Keyword: Propeller performance

Search Result 395, Processing Time 0.022 seconds

On Propeller Performance of DTC Post-Panamax Container Ship

  • Kinaci, Omer Kemal;Kukner, Abdi;Bal, Sakir
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.77-89
    • /
    • 2013
  • The propeller performance has been investigated using a benchmark Duisburg Test Case ship with RANSE. First, the hydrodynamic characteristics of propeller in case of open water have been analyzed by a commercial CFD program and the results are compared with those of experimental data. Later, the flow around the bare hull has been solved and the frictional resistance value and form factor of the ship have been obtained and compared with those of ITTC57 formulation and experimental results for validation. The free surface effect has been ignored. A good agreement has been obtained between the results of RANSE and experiments at both stages. Then the ship - propeller interaction problem was solved by RANSE and the differences in thrust, torque and efficiency of propeller as compared with the open-water numerical results have been discussed.

Development of a Method to Analyze Powering Performance of a Ship and its Application to Optimum Hull Form Design (선박(船舶)의 정수중(靜水中) 추진성능(推進性能) 해석(解析) 및 최적선형설계(最適船型設計)에의 응용(應用))

  • Seung-Il,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.2
    • /
    • pp.35-48
    • /
    • 1985
  • The present work develops a method of evaluating thrust deduction and wake for different loads of the propeller using the concerted application of the theoretical tools and experimental techniques. It also shows the applicability of the new method to the design of optimum hull form. Firstly, the problem of hull-propeller interaction was analyzed in terms of inviscid as well as viscous components of the thrust deduction and wake. The wavemaking resistance of a hull and propeller were mathematically represented by sources on the hull surface and sink on the propeller plane, respectively. The strength of sink was determined by utilizing the radial distributions of propeller load and nominal wake. The resistance increment due to a propeller and the axial perturbation flow induced by the hull in the propeller plane were calculated. Especially, the inviscid component of the thrust deduction was calculated by subtraction the wavemaking resistance of a bare hull, the wavemaking resistance of a free-running propeller and the augmentation of propeller resistance due to hull action from the wavemaking resistance of the hull with a propeller. The viscous components of the thrust deduction and wake were estimated as functions of propeller load which were established by the propeller load varying test after deduction the calculated inviscid components. Secondly, an analysis method of powering performance was developed based on the potential theory and the propeller load varying test. The hybrid method estimates the thrust deduction, wake and propeller open-water efficiency for different propeller load. This method can be utilized in the analysis of powering performance for the propeller load variation such as the added resistance due to hull surface roughness, the added resistance due to wind, etc. Finally, the hybrid method was applied to the optimum design of hull form. A series of afterbody shapes was obtained by systematically varying the waterplane and section shapes of a parent afterbody without changing the principal dimensions, block coefficient and prismatic coefficient. From the comparison of the predicted results such as wavemaking resistance, thrust deduction, wake and delivered power, an optimum hull form was obtained. The delivered power of the optimized hull form was reduced by 5.7% which was confirmed by model tests. Also the predicted delivered power by the hybrid method shows fairly good agreement with the test result. It is therefore considered that the new analysis method of powering performance can be utilized as a practical tool for the design of optimum hull form as for the analysis of powering performance for the propeller load variation in the preliminary design stage.

  • PDF

A Study on Performance of Tip Rake Propeller in Propeller Open Water Condition (P.O.W 상태에서의 Tip Rake Propeller에 대한 성능연구)

  • Lee, Joon-Hyoung;Kim, Moon-Chan;Shin, Yong-Jin;Kang, Jin-Gu;Jang, Hyun-Gil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • This paper deals with a comparison of performance between tip rake propeller and normal propeller in P.O.W condition. In comparison with normal propeller, tip rake propeller is good at preventing occurring negative effect: tip vortex, etc. But, officially formulated information about tip rake propeller doesn't become known. So this paper makes design variables about rake factors and applies them to propeller geometry. And propellers applied design variables are compared with each other about open water propeller efficiency. Also this paper confirms a vorticity reduction at propeller tip.

A Study on the Hydrodynamic Effect of Biofouling on Marine Propeller (선박 프로펠러 표면의 생물부착물이 프로펠러 유체역학적 성능에 미치는 영향에 관한 연구)

  • Seo, Kwang-Cheol;Atlar, Mehmet;Goo, Bonguk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.123-128
    • /
    • 2016
  • The effect of propeller surface roughness condition on ship performance is very significant even the influence of fouling on propeller performance is not well established compared to biofouling on the hull surface. In present study, predictions of open water efficiency of propeller are made for three different fouling conditions, and its application is given for the 7m full-scale propeller of a medium-size tanker in open water condition. The numerical predictions of propeller efficiency loss due to fouling are based on the results from laboratory-scale drag measurements and boundary layer similarity law analysis presented in Schultz (2007) together with an in-house unsteady lifting surface code which is an appropriate tool to predict the effect of propeller surface roughness on propeller performance. The results of this study indicate that the subject propeller with the small calcareous fouling ($k_s=0.001$) can lead to as high as 15 % loss at the propeller operating condition (J=0.5) and the loss of propeller efficiency due to fouling should be evaluated while the ship is operating.

Design of optimum propeller for target drone II (무인 표적기 프로펠러의 최적 설계 II)

  • 성형건;노태성
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.246-249
    • /
    • 2003
  • The propeller of the propulsion system for a target drone has been designed. Vortex theory has been applied to the propeller design method. This method analyze the propeller performance according to the design parameters. The optimum design has been aimed to maximize the efficiency. The performance of the designed propeller has been analyzed.

  • PDF

Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations

  • Yao, Jianxi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.56-69
    • /
    • 2015
  • This paper presents a numerical study on investigating on hydrodynamic characteristics of a marine propeller in oblique flow. The study is achieved by RANS simulations on an open source platform - OpenFOAM. A sliding grid approach is applied to compute the rotating motion of the propeller. Total force and moment acting on blades, as well as average force distributions in one revolution on propeller disk, are obtained for 70 cases of combinations of advance ratios and oblique angles. The computed results are compared with available experimental data and discussed.

Numerical simulation of propeller exciting force induced by milling-shape ice

  • Wang, C.;Li, X.;Chang, X.;Xiong, W.P.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.294-306
    • /
    • 2019
  • On the basis of the Computational Fluid Dynamics technique (CFD) combined with the overlap grid method, this paper establishes a numerical simulation method to study the problem of ice-propeller interaction in viscous flow and carries out a simulation forecast of the hydrodynamic performance of an ice-class propeller and flow characteristics when in the proximity of milling-shape ice (i.e., an ice block with a groove cut by a high-speed revolving propeller). We use a trimmed mesh in the entire calculation domain and use the overlap grid method to transfer information between the domains of propeller rotation calculation and ice-surface computing. The grid is refined in the narrow gap between the ice and propeller to ensure the accuracy of the flow field. Comparison with the results of the experiment reveals that the error of the hydrodynamic performance is within 5%. This confirms the feasibility of the calculation method. In this paper, we calculate the exciting force of the propeller, analyze the time domain of the exciting force, and obtain the curve of the frequency domain using a Fourier transform of the time-domain curve of the exciting force. The existence of milling-shape ice before the propeller can greatly disturb the wake flow field. Unlike in open water, the propeller bearing capacity shows a downward trend in three stages, and fluctuating pressure is more disordered near the ice.

A BEM/RANS interactive method for predicting contra-rotating propeller performance

  • Su, Yiran;Kinnas, Spyros A.
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.329-344
    • /
    • 2017
  • This paper introduces a BEM/RANS interactive scheme to predict the contra-rotating propeller (CRP) performance. In this scheme, the forward propeller and the aft propeller are handled by two separate BEM models while the interactions between them are achieved by coupling them with a RANS solver. By using the body force field and mass source field to represent the propeller in the RANS model, the number of RANS cells and the number of required RANS iterations reduce significantly. The method provides an efficient way to predict the effective wake, the steady/unsteady propeller forces, etc. The BEM/RANS interactive scheme is first applied to a CRP in both an axisymmetric manner and a non-axisymmetric manner. Results are shown in good agreement with the experimental data in moderate to high advance ratios. It is proved that the difference between the axisymmetric scheme and the non-axisymmetric scheme mainly comes from the non-axisymmetric bodies. It is also found that the error is larger at lower advance ratios. Possible explanations are given. Finally, some additional cases are tested which justifies that the non-axisymmetric BEM/RANS scheme is able to handle a podded CRP working at given inclination angles.

An Experimental Study for Construction of Aerodynamic Database of the Commercial Propeller (상용 프로펠러 공력 데이터베이스 구축을 위한 실험적 연구)

  • Shim, HoJoon;Kim, Geon-Hong;Cheon, HyeJin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.60-71
    • /
    • 2021
  • Propeller performance measurement system for commercial propeller was designed and applied to the wind tunnel test for 3 commercial propeller models with diameters of 30 inch. The thrust and torque of the propeller was directly measured by using 6-components balance installed on the rotating axis. The measurement system was validated by using wind tunnel balance calibration equipment. Propeller test stand including measurement and rotating system was validated by using QTP propeller. In the hovering condition, we compared the performance test results and the specifications of the commercial propeller provided by the manufacturer and confirmed that there are differences in the thrust and the torque. We measured the propeller performance with various wind speeds, propeller models and angles of attack and was summarized by thrust coefficients. We confirmed that the trend of the thrust coefficients was different in the low angle of attack and high angle of attack. An aerodynamics database that can be used for future aerodynamic design of an unmanned aerial vehicle was secured.

Performance Improvement Study of Propeller Propulsion Efficiency and Cavitation for the 8800TEU Class Container (8800TEU급 컨테이너선 프로펠러 추진효율 및 캐비테이션 성능향상 연구)

  • Ahn, Jong-Woo;Kim, Gun-Do;Kim, Ki-Sup;Park, Young-Ha;Ahn, Hae-Seong;Jung, Young-Jun;Yoon, Ji-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.453-460
    • /
    • 2017
  • In order to investigate propulsion efficiency and cavitation characteristics for expanded area ratio variation of the 8800TEU class container propeller, a series of performance tests were conducted at Large Cavitation Tunnel (LCT) and Towing Tank (TT) in KRISO. The cavitation test of the existing propellers (KP1029 & KP1030) was conducted using FRP model ship in LCT. On the basis of LCT test results, it was required to design propeller with better propulsion efficiency and cavitation performance. Two propellers (KP1171 & KP1172) with decreased expanded area ratio were designed on the basis of KP1029 propeller. The new design propellers showed higher efficiency than KP1029 and reasonable cavitation performance. In the future, they will be applied as the standard propeller for the propeller design of the large container ship. Through the performance test and prediction results for the new design propellers, it is thought that high-load propeller with better propulsion efficiency and cavitation performance will be developed constantly.