• 제목/요약/키워드: Propagation properties

검색결과 930건 처리시간 0.025초

Wave propagation of FG-CNTRC plates in thermal environment using the high-order shear deformation plate theory

  • Hao-Xuan Ding;Hai-Bo Liu;Gui-Lin She;Fei Wu
    • Computers and Concrete
    • /
    • 제32권2호
    • /
    • pp.207-215
    • /
    • 2023
  • This paper investigates wave propagation in functionally graded carbon nano-reinforced composite (FG-CNTRC) plates under the influence of temperature based on Reddy' plate model. The material properties of Carbon Nanotubes (CNTs) are size-dependent, and the volume fraction of CNTs varies only along the thickness direction of the plate for different CNTs reinforcement modes. In addition, the material properties of CNTs can vary for different temperature parameters. By solving the eigenvalue problem, analytical dispersion relations can be derived for CNTRC plates. The partial differential equations for the system are derived from Lagrange's principle and higher order shear deformation theory is used to obtain the wave equations for the CNTRC plate. Numerical analyses show that the wave propagation properties in the CNTRC plate are related to the volume fraction parameters of the CNTRC plate and the distribution pattern of the CNTs in the polymer matrix. The effects of different volume fractions of CNTs and the distribution pattern of carbon nanotubes along the cross section (UD-O-X plate) are discussed in detail.

An Adaptive Control for the Propagation Errors Incurred by DCT Coefficient-Dropping Transcoder

  • Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok;Yun, Mong-Han
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.559-568
    • /
    • 2007
  • This paper presents a new distortion control scheme with a simple estimation model for the propagation errors incurred by dropping some parts of the bitstream in a frame dropping-coefficient dropping (FD-CD) transcoder. The primary goal of this paper is to facilitate bit-rate conversions and rate-distortion controls in the compressed domain without introducing a full decoding and reencoding system in the pixel domain. First, the error propagation behavior over several frame sequences due to coefficient dropping is investigated on the basis of statistical and empirical properties. Then, such properties are used to develop a simple estimation model for the CD distortion accounting for the characteristics of the underlying coded-frame. Finally, the proposed estimation model allows us to determine the amount of coefficient dropping and to effectively allocate rate-distortions into coded-frames. Experimental results show that the proposed estimation model accurately describes the characteristics of propagation errors adaptively in the compressed domain and can be easily applied to distortion control over different kinds of video sequences.

  • PDF

Wave propagation and vibration of FG pipes conveying hot fluid

  • Zhang, Yi-Wen;She, Gui-Lin
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.397-405
    • /
    • 2022
  • The existing researches on the dynamics of the fluid-conveying pipes only focus on stability and vibration problems, and there is no literature report on the wave propagation of the fluid-conveying pipes. Therefore, the purpose of this paper is to explore the propagation characteristics of longitudinal and flexural waves in the fluid-conveying pipes. First, it is assumed that the material properties of the fluid-conveying pipes vary based on a power function of the thickness. In addition, it is assumed that the material properties of both the fluid and the pipes are closely depended on temperature. Using the Euler-Bernoulli beam equation and based on the linear theory, the motion equations considering the thermal-mechanical-fluid coupling is derived. Then, the exact expressions of phase velocity and group velocity of longitudinal waves and bending waves in the fluid-conveying pipes are obtained by using the eigenvalue method. In addition, we also studied the free vibration frequency characteristics of the fluid-conveying pipes. In the numerical analysis, we successively studied the influence of temperature, functional gradient index and liquid velocity on the wave propagation and vibration problems. It is found that the temperature and functional gradient exponent decrease the phase and group velocities, on the contrary, the liquid flow velocity increases the phase and group velocities. However, for vibration problems, temperature, functional gradient exponent parameter, and fluid velocity all reduce the natural frequency.

GaN/사파이어 구조에서의 표면탄성파 전단특성 (SAW Propagation Properties of GaN/Sapphire Structure)

  • 최국현;김진용;김형준;정수진;이태근;김영진
    • 한국재료학회지
    • /
    • 제12권7호
    • /
    • pp.522-527
    • /
    • 2002
  • To investigate the SAW properties of GaN films on c-plane sapphire substrates, we carried out both the experimental measuring and theoretical calculation. The experimental characterization of SAW propagation properties was performed with a linear array of interdigital transducer (IDT) structures, while SAW velocities were calculated by matrix methods. HVPSAW mode with the propagation velocity over 10,000m/s and PSAW mode as well as GSAW could be observed in experimental determination. These results were verified by matching with the theoretical calculation.

Analysis of Propagation Properties in Junctions between Straight and Bent Waveguides Using Cylindrical Functions of Complex Order

  • Rashid, Mohd-Abdur;Masao Kodama
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.711-714
    • /
    • 2002
  • This paper presents a method to determine the propagation properties in the junctions between straight and bent waveguides using cylindrical functions of complex order. The proposed method was succeeded by developing the method of numerical calculation of cylindrical functions of complex order. As a result, we numerically calculate the reflection and transmission coefficients in the junctions in various situations, and we compare these results with the results by the perturbation method.

  • PDF

Homomorphic Deconvolution 법에 의한 초음파 감쇄정수 추정 (Estimation of Ultrasound Attenuation Coefficient by Homomorphic Deconvolution Method)

  • 홍승홍;허웅
    • 대한의용생체공학회:의공학회지
    • /
    • 제5권1호
    • /
    • pp.39-46
    • /
    • 1984
  • In order to improve the performance of ultrasonic diagnostic equipment, it is important to development the signal processing considering the ultrasonic properties of biological medium and propagation mechanism in tissue. Attenuation coefficient is not only important factor to analyze propagation properties, but also it is significant to estimate it in view of tissue characterization, so we show one of the method to estimate attenuation coefficient of biological tissue and the results of estimation.

  • PDF

The piezoelectricity of trabecular bone in cancellous bone wave propagation

  • Yoon, Young June;Chung, Jae Pil
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.104-107
    • /
    • 2021
  • The orientation of trabeculae and porosity determine the wave propagation in cancellous bone. Wave propagation, as well as charge density and piezoelectricity, stimulate bone remodeling. Also, Charged ions in the fluid affect wave propagation in cancellous bone. But the trabecular struts' piezoelectricity does not change the waveform of cancellous bone. However, the underlying mechanism is unknown yet why trabecula struts' piezoelectricity does not change wave propagation through cancellous bone. Thus, we derived the governing equation indicating that trabecular struts' piezoelectric properties show that those do not affect wave propagation in cancellous bone.

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Mohammad Hosseini;Parisa Chahargonbadizade;Mohammadreza Mofidi
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.335-354
    • /
    • 2023
  • In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.

Propagation characteristics of wave in GPLRMF circular plates considering thermal factor

  • L. L. Gan;Jia-Qin Xu;G.L. She
    • Earthquakes and Structures
    • /
    • 제27권2호
    • /
    • pp.155-164
    • /
    • 2024
  • Studying the propagation characteristics of waves in circular plates has important engineering value. In this paper, graphene sheet reinforced foam (GPLRMF) circular plates are taken as the research object, and the propagation characteristics of shear and bending waves in the structure are analyzed. In the process of research, we assume that the material properties are closely related to temperature, and use the first-order shear deformation theory (FSDT) to establish the dynamic model of GPLRMF circular plates. Considering the simply supported boundary conditions, the relationship between phase velocity/group velocity and wave number was obtained through Laplace transform. Subsequently, the influence of material and geometric parameters on wave propagation characteristics was analyzed, and the results showed that the porosity coefficient and temperature had a significant impact on the characteristics of wave propagation in circular plates.

부분 열처리한 기계 구조용 합금강의 피로균열 전파에 관한 연구 (A Study on the Fatigue Crack Propagation of Partly Heat Treated Medium Carbon Alloy Steel)

  • 이억섭;김선용
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.3-8
    • /
    • 1997
  • It is well known that mechanisms of fracture and fatigue crack propagation depend upon various characteristics such as environmental condition, crack geometry, heat treatment and mechanical properties. It seems to be important for the detailed evaluation of structural components which contain flaws. In this paper, it is studied that the fatigue crack propagation of partly heat treated medium carbon alloy steel(SCM440) by high frequency heat treatment.

  • PDF