DOI QR코드

DOI QR Code

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Received : 2021.04.12
  • Accepted : 2023.10.31
  • Published : 2023.11.25

Abstract

In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.

Keywords

References

  1. Ajayan, P., Stephan, O., Colliex, C. and Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Sci., 265(5176), 1212-1214. https://doi.org/10.1126/science.265.5176.1212.
  2. Arefi, M., Kiani, M. and Zamani, M. (2018), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater., 22(7), 2157-2185. https://doi.org/10.1177/1099636218795378.
  3. Bahaadini, R., Saidi, A.R. and Hosseini, M. (2019), "Flowinduced vibration and stability analysis of carbon nanotubes based on the nonlocal strain gradient Timoshenko beam theory", J. Vib. Control, 25(1), 203-218. https://doi.org/10.1177/1077546318774242.
  4. Barati, M.R. (2018), "Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity", Acta Mechanica, 229(3), 1183-1196. https://doi.org/10.1007/s00707-017-2032-z.
  5. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707.
  6. Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E. and Mahmoud, S. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  7. Boyina, K. and Piska, R. (2023), "Wave propagation analysis in viscoelastic Timoshenko nanobeams under surface and magnetic field effects based on nonlocal strain gradient theory", Appl. Math. Comput., 439, 127580. https://doi.org/10.1016/j.amc.2022.127580.
  8. Civalek, O ., Dastjerdi, S. and Akgoz, B. (2022), "Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates", Mech. Bas. Des. Struct. Mach., 50(6), 1914-1931. https://doi.org/10.1080/15397734.2020.1766494.
  9. Cong, P.H. and Duc, N.D. (2023), "Effect of nonlocal parameters and Kerr foundation on nonlinear static and dynamic stability of micro/nano plate with graphene platelet reinforcement", Thin Wall. Struct., 182, 110146. https://doi.org/10.1016/j.tws.2022.110146.
  10. Dastjerdi, S., Malikan, M., Dimitri, R. and Tornabene, F. (2021), "Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment", Compos. Struct., 255, 112925. https://doi.org/10.1016/j.compstruct.2020.112925.
  11. Dehghanian, Z., Fallah, F. and Farrahi, G. (2023), "Wave propagation analysis in pre-stressed incompressible hyperelastic multi-layered plates using a plate theory", Eur. J. Mech.-A/Solid., 103, 105141. https://doi.org/10.1016/j.euromechsol.2023.105141.
  12. Dini, A., Hosseini, M. and Nematollahi, M.A. (2021), "On the size-dependent dynamics of curved single-walled carbon nanotubes conveying fluid based on nonlocal theory", Acta Mechanica, 232, 4729-4745. https://doi.org/10.1007/s00707-021-03081-7.
  13. Ebrahimi, F. and Barati, M.R. (2018), "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143.
  14. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.
  15. Ebrahimi, F. and Seyfi, A. (2022), "On wave propagation characteristics of hygrothermally excited graphene foam plates", Wave. Random Complex Media, 1-20. https://doi.org/10.1080/17455030.2022.2105416.
  16. Farajpour, M., Shahidi, A. and Farajpour, A. (2019), "Influence of shear preload on wave propagation in small-scale plates with nanofibers", Struct. Eng. Mech., 70(4), 407-420. https://doi.org/10.12989/sem.2019.70.4.407.
  17. Gao, M., Wang, G., Liu, J. and He, Z. (2023), "Wave propagation analysis in functionally graded metal foam plates with nanopores", Acta Mechanica, 234(4), 1733-1755. https://doi.org/10.1007/s00707-022-03442-w.
  18. Gao, W., Liu, Y., Qin, Z. and Chu, F. (2022), "Wave propagation in smart sandwich plates with functionally graded nanocomposite porous core and piezoelectric layers in multiphysics environment", Int. J. Appl. Mech., 14(07), 2250071. https://doi.org/10.1142/S1758825122500715.
  19. Gao, W., Qin, Z. and Chu, F. (2020), "Wave propagation in functionally graded porous plates reinforced with graphene platelets", Aerosp. Sci. Technol., 102, 105860. https://doi.org/10.1016/j.ast.2020.105860.
  20. Ghandourah, E.E., Daikh, A.A., Alhawsawi, A.M., Fallatah, O.A. and Eltaher, M.A. (2022), "Bending and buckling of FG-GRNC laminated plates via quasi-3D nonlocal strain gradient theory", Math., 10(8), 1321. https://doi.org/10.3390/math10081321.
  21. Gholami, Y., Ansari, R., Gholami, R. and Sadeghi, F. (2022), "Size-dependent free vibration and buckling analysis of magneto-electro-thermo-elastic nanoplates based on the thirdorder shear deformable nonlocal plate model", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 236(14), 8116-8133. https://doi.org/10.1177/09544062221079179.
  22. Habibi, S., Hosseini, M., Izadpanah, E. and Amini, Y. (2016), "Applicability of continuum based models in designing proper carbon nanotube based nanosensors", Comput. Mater. Sci., 122, 322-330. https://doi.org/10.1016/j.commatsci.2016.05.019.
  23. Hosseini, M., Bemanadi, N. and Mofidi, M. (2023), "Free vibration analysis of double-viscoelastic nano-composite microplates reinforced by FG-SWCNTs based on the third-order shear deformation theory", Microsyst. Technol., 29(1), 71-89. https://doi.org/10.1007/s00542-022-05390-w.
  24. Hosseini, M., Dini, A. and Eftekhari, M. (2017), "Strain gradient effects on the thermoelastic analysis of a functionally graded micro-rotating cylinder using generalized differential quadrature method", Acta Mechanica, 228(5), 1563-1580. https://doi.org/10.1007/s00707-016-1780-5.
  25. Hosseini, M., Ghorbanpour Arani, A., Karamizadeh, M., Niknejad, S. and Hosseinpour, A. (2022), "Static and dynamic stability analysis of thick CNT reinforced beams resting on pasternak foundation under axial and follower forces", J. Solid Mech., 14(1), 1-16. https://doi.org/10.22034/jsm.2019.585582.1401.
  26. Hosseini, M., Jamalpoor, A. and Bahreman, M. (2016), "Smallscale effects on the free vibrational behavior of embedded viscoelastic double-nanoplate-systems under thermal environment", Acta Astronautica, 129, 400-409. https://doi.org/10.1016/j.actaastro.2016.10.001.
  27. Hosseini, M. and Majidi-Mozafari, K. (2022), "Stability analysis of a functionally graded CNT reinforced composite plate integrated with piezoelectric layers subjected to supersonic airflow", AUT J. Mech. Eng., 6(4), 252. https://doi.org/10.22060/ajme.2019.16343.5815.
  28. Jamalpoor, A., Bahreman, M. and Hosseini, M. (2019), "Free transverse vibration analysis of orthotropic multi-viscoelastic microplate system embedded in visco-Pasternak medium via modified strain gradient theory", J. Sandw. Struct. Mater. Des., 21(1), 175-210. https://doi.org/10.1177/1099636216689384.
  29. Janghorban, M. and Nami, M.R. (2017), "Wave propagation in functionally graded nanocomposites reinforced with carbon nanotubes based on second-order shear deformation theory", Mech. Adv. Mater. Struct., 24(6), 458-468. https://doi.org/10.1080/15376494.2016.1142028.
  30. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  31. Kuriakose, V.M., Sai, P.R., Kumar, M.S. and Sreehari, V. (2022), "Influence of CNT fillers in the vibration characteristics of natural fiber reinforced composite plates", Compos. Struct., 282, 115012. https://doi.org/10.1016/j.compstruct.2021.115012.
  32. Lei, Z., Zhang, L. and Liew, K. (2015), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruct.2015.03.019.
  33. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  34. Liu, C., Yu, J., Xu, W., Zhang, X. and Zhang, B. (2020), "Theoretical study of elastic wave propagation through a functionally graded micro-structured plate base on the modified couple-stress theory", Meccanica, 55(5), 1153-1167. https://doi.org/10.1007/s11012-020-01156-8.
  35. Moradi-Dastjerdi, R. and Behdinan, K. (2021), "Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers", Appl. Math. Model., 96, 66-79. https://doi.org/10.1016/j.apm.2021.03.013.
  36. Nami, M.R. and Janghorban, M. (2015), "Free vibration of thick functionally graded carbon nanotube-reinforced rectangular composite plates based on three-dimensional elasticity theory via differential quadrature method", Adv. Compos. Mater., 24(5), 439-450. https://doi.org/10.1080/09243046.2014.901472.
  37. Nguyen, P.C. and Pham, Q.H. (2023), "A nonlocal isogeometric model for buckling and dynamic instability analyses of FG graphene platelets-reinforced nanoplates", Mater. Today Commun., 34, 105211. https://doi.org/10.1016/j.mtcomm.2022.105211.
  38. Phung-Van, P., Ferreira, A., Nguyen-Xuan, H. and Thai, C.H. (2021), "Scale-dependent nonlocal strain gradient isogeometric analysis of metal foam nanoscale plates with various porosity distributions", Compos. Struct., 268, 113949. https://doi.org/10.1016/j.compstruct.2021.113949.
  39. Phung-Van, P., Nguyen-Xuan, H. and Thai, C.H. (2023), "Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach", Eng. Comput., 39(1), 857-866. https://doi.org/10.1007/s00366-022-01689-4.
  40. Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.
  41. Shan, W., Deng, Z., Zhong, H., Mo, H., Han, Z., Yang, Z., Xiang, C., Li, S. and Liu, P. (2020), "Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates", Struct. Eng. Mech., 76(4), 551-559. https://doi.org/10.12989/sem.2020.76.4.551.
  42. Sharma, L.K., Bhardwaj, G. and Grover, N. (2023), "Finite element framework for static analysis of temperature dependent IHSDT based functionally graded CNT reinforced plates", Mech. Bas. Des. Struct. Mach., 51(9), 5318-5339. https://doi.org/10.1080/15397734.2021.1999265.
  43. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  44. Shooshtari, A. and Rafiee, M. (2011), "Vibration characteristics of nanocomposite plates under thermal conditions including nonlinear effects", Int. J. Appl. Res. Mech. Eng., 1(1), 60-69. https://doi.org/10.47893/IJARME.2011.1012
  45. Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., 63(3), 401-415. https://doi.org/10.12989/sem.2017.63.3.401.
  46. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  47. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT", Steel Compos. Struct., 42(4), 501. https://doi.org/10.12989/scs.2022.42.4.501.
  48. Thai, C.H., Ferreira, A. and Phung-Van, P. (2020), "A nonlocal strain gradient isogeometric model for free vibration and bending analyses of functionally graded plates", Compos. Struct., 251, 112634. https://doi.org/10.1016/j.compstruct.2020.112634.
  49. Tocci Monaco, G., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021), "Critical temperatures for vibrations and buckling of magneto-electro-elastic nonlocal strain gradient plates", Nanomater., 11(1), 87. https://doi.org/10.3390/nano11010087.
  50. Van Vinh, P., Tounsi, A. and Belarbi, M.O. (2023), "On the nonlocal free vibration analysis of functionally graded porous doubly curved shallow nanoshells with variable nonlocal parameters", Eng. Comput., 39(1), 835-855. https://doi.org/10.1007/s00366-022-01687-6.
  51. Wang, K.F. and Wang, B.L. (2011), "Vibration of nanoscale plates with surface energy via nonlocal elasticity", Physica E: Low Dimens. Syst. Nanostruct., 44(2), 448-453. https://doi.org/10.1016/j.physe.2011.09.019.
  52. Wang, Y.Z., Li, F.M. and Kishimoto, K. (2010), "Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress", Appl. Phys. A, 99(4), 907-911. https://doi.org/10.1007/s00339-010-5666-4.
  53. Yue, X.G., Sahmani, S. and Safaei, B. (2023), "Nonlocal couple stress-based quasi-3D nonlinear dynamics of agglomerated CNT-reinforced micro/nano-plates before and after bifurcation phenomenon", Physica Scripta, 98(3), 035710. https://doi.org/10.1088/1402-4896/acb858.
  54. Zandi-Baghche-Maryam, A., Dini, A. and Hosseini, M. (2022), "Wave propagation analysis of inhomogeneous Multi-Nanoplate systems subjected to a thermal field considering surface and flexoelectricity effects", Wave. Random Complex Media, 1-28. https://doi.org/10.1080/17455030.2022.2032467.
  55. Zang, J., Fang, B., Zhang, Y.W., Yang, T.Z. and Li, D.H. (2014), "Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory", Physica E: Low Dimens. Syst. Nanostruct., 63, 147-150. https://doi.org/10.1016/j.physe.2014.05.019.
  56. Zhang, L., Liu, J., Fang, X. and Nie, G. (2014), "Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates", Eur. J. Mech.-A/Solid., 46, 22-29. https://doi.org/10.1016/j.euromechsol.2014.01.005.
  57. Zhang, L., Song, Z. and Liew, K. (2015), "State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory", Compos. Struct., 134, 989-1003. https://doi.org/10.1016/j.compstruct.2015.08.138.
  58. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(1), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.
  59. Zhu, X., Zhang, H., Lu, G. and Zhou, H. (2022), "Nonlinear impulsive and vibration analysis of nonlocal FG-CNT reinforced sandwich plate by considering agglomerations", Eur. J. Mech.-A/Solid., 92, 104485. https://doi.org/10.1016/j.euromechsol.2021.104485.