DOI QR코드

DOI QR Code

Propagation characteristics of wave in GPLRMF circular plates considering thermal factor

  • L. L. Gan (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Jia-Qin Xu (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • G.L. She (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2024.03.02
  • Accepted : 2024.06.13
  • Published : 2024.08.25

Abstract

Studying the propagation characteristics of waves in circular plates has important engineering value. In this paper, graphene sheet reinforced foam (GPLRMF) circular plates are taken as the research object, and the propagation characteristics of shear and bending waves in the structure are analyzed. In the process of research, we assume that the material properties are closely related to temperature, and use the first-order shear deformation theory (FSDT) to establish the dynamic model of GPLRMF circular plates. Considering the simply supported boundary conditions, the relationship between phase velocity/group velocity and wave number was obtained through Laplace transform. Subsequently, the influence of material and geometric parameters on wave propagation characteristics was analyzed, and the results showed that the porosity coefficient and temperature had a significant impact on the characteristics of wave propagation in circular plates.

Keywords

References

  1. Abuteir, B.W. and Boutagouga, D. (2022), "Free-vibration response of functionally graded porous shell structures in thermal environments with temperature-dependent material properties", Acta. Mech., 233(11), 4877-4901. https://doi.org/10.1007/s00707-022-03351-y.
  2. Alhaifi, K., Khorshidvand, A.R., Al-Masoudy, M.M., Arshid, E. and Madani, S.H. (2023), "A shooting method for buckling and post-buckling analyses of FGSP circular plates considering various patterns of Pores' placement", Struct. Eng. Mech., 85(3), 419-432. https://doi.org/10.12989/sem.2023.85.3.419.
  3. Arshid, E., Amir, S. and Loghman, A. (2023a), "On the vibrations of FG GNPs-RPN annular plates with piezoelectric/metallic coatings on Kerr elastic substrate considering size dependency and surface stress effects", Acta Mech., 234(9), 4035-4076. https://doi.org/10.1007/s00707-023-03593-4.
  4. Arshid, E., Amir, S. and Loghman, A. (2023b), "Thermoelastic vibration characteristics of asymmetric annular porous reinforced with nano-fillers microplates embedded in an elastic medium: CNTs Vs. GNPs", Arch. Civil Mech. Eng., 23(2), 100. https://doi.org/10.1007/s43452-023-00624-8.
  5. Arshid, E., Nia, M.J.M., Ghorbani, M.A., Civalek, O. and Kumar, A. (2023c), "On the poroelastic vibrations of lightweight FGSP doubly-curved shells integrated with GNPs-reinforced composite coatings in thermal atmospheres", Appl. Math. Model., 124, 122-141. https://doi.org/10.1016/j.apm.2023.07.036.
  6. Chu, C., Al-Furjan, M.S.H., Kolahchi, R. and Farrokhian, A. (2023), "A nonlinear Chebyshev-based collocation technique to frequency analysis of thermally pre/post-buckled third-order circular sandwich plates", Commun. Nonlin. Sci., 118, 107056. https://doi.org/10.1016/j.cnsns.2022.107056.
  7. Dang, R.Q., Cui, Y.H., Qu, J.G., Yang, A.M. and Chen, Y.M. (2022), "Variable fractional modeling and vibration analysis of variable-thickness viscoelastic circular plate", Appl. Math. Model., 110, 767-778. https://doi.org/10.1016/j.apm.2022.06.008.
  8. Farrokh, M. and Fard, H.M.S. (2022), "An extension of Carrera unified formulation in polar coordinates for mechanical and thermal buckling analysis of axisymmetric FG circular plate using FEM", Mech. Adv. Mater. Struct., 31(8), 1803-1811. https://doi.org/10.1080/15376494.2022.2142885.
  9. Gan, L.L, Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
  10. Ghafouri, M., Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2022), "Sound propagation of three-dimensional sandwich panels: Influence of three-dimensional re-entrant auxetic core", AIAA J., 60(11), 6374-6384. https://doi.org/10.2514/1.J061219.
  11. Ghosh, S., Bao, W.Z., Nika, D.L., Subrina, S., Pokatilov, E.P., Lau, C.N. and Balandin, A.A. (2010), "Dimensional crossover of thermal transport in few-layer graphene", Nat. Mater., 9(7), 555-558. https://doi.org/10.1038/NMAT2753.
  12. Gupta, N.K. (2023), "Response of thin walled transversely stiffened clamped circular plates under uniform loads", Thin Wall. Struct., 182(B), 110290. https://doi.org/10.1016/j.tws.2022.110290.
  13. Ji, M., Wu, Y.C. and Ma, C.C. (2022), "In-plane-dominated vibration characteristics of piezoelectric thick circular plates based on higher-order plate theories", J. Mech., 38, 410-432. https://doi.org/10.1093/jom/ufac034.
  14. Kalavakunda, V. and Hosmane, N.S. (2016), "Graphene and its analogues", Nanotechnol. Rev., 5(4), 369-376. https://doi.org/10.1126/10.1515/ntrev-2015-0068.
  15. Kamali, F., Shahabian, F. and Aftabi-Sani, A. (2023), "Free vibration analysis of saturated porous circular micro-plates integrated with piezoelectric layers; differential transform method", Acta Mech., 234(2), 649-669. https://doi.org/10.1007/s00707-022-03407-z.
  16. Kaur, I. and Singh, K. (2023), "An investigation on responses of thermoelastic interactions of transversely isotropic thick circular plate due to ring load with memory-dependent derivatives", SN Appl. Sci., 5(4). https://doi.org/10.1007/s42452-023-05324-9.
  17. Keibolahi, A., Kiani, Y. and Eslami, M.R. (2023), "Nonlinear dynamic snap-through and vibrations of temperature-dependent FGM deep spherical shells under sudden thermal shock", Thin Wall. Struct., 185, 110561. https://doi.org/10.1016/j.tws.2023.110561.
  18. Lee, C., Wei, X.D., Kysar, J.W. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Sci., 321(5887), 385-388. https://doi.org/10.1126/10.1126/science.1157996.
  19. Li, W.Q., Hu, Y.D. and Li, Z. (2023), "Magneto-aero-elastic superharmonic and subharmonic resonances, bifurcations and chaos of conductive spinning circular plates", Int. J. Bifurcat. Chaos, 33(1), 2330001. https://doi.org/10.1142/S021812742330001X.
  20. Li, Y.P. and She, G.L. (2024), "Nonlinear transient response analysis of rotating carbon nanotube reinforced composite cylindrical shells with initial geometrical imperfection", Arch. Civil Mech. Eng., 24(3), 161. https://doi.org/10.1007/s43452-024-00973-y.
  21. Liang, J.J., Huang, Y., Zhang, L., Wang, Y., Ma, Y.F., Guo, T.Y. and Chen, Y.S. (2009), "Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites", Adv. Funct. Mater., 19(14), 2297-2302. https://doi.org/10.1002/adfm.200801776.
  22. Liu, X.J., Zhou, Y.H. and Wang, J.Z. (2023), "Highly accurate wavelet solution for bending and free vibration of circular plates over extra-wide ranges of deflections", J. Appl. Mech., 90(3), 031009. https://doi.org/10.1115/1.4056397.
  23. Long, V.T. and Tung, H.V. (2022), "Buckling behavior of thick porous functionally graded material toroidal shell segments under external pressure and elevated temperature including tangential edge restraint", J. Press. Vessel Technol., 144(5), 051310. https://doi.org/10.1115/1.4053485.
  24. Medina, L. (2023), "Effect of membrane load on the stability of an electrostatically actuated initially curved circular micro plate", J. Appl. Mech., 90(3), 031002. https://doi.org/10.1115/1.4056059.
  25. Navardi, M.M., Shahverdi, H. and Khalafi, V. (2023), "Aeroelastic tailoring of variable stiffness composite laminated quadrilateral and circular plates in supersonic flow using isogeometric approach", Int. J. Appl. Mech., 15(1), 2250091. https://doi.org/10.1142/S1758825122500910.
  26. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Sci., 306(5696), 666-669. https://doi.org/10.1126/science.1102896.
  27. Peng, L.X., Xiang, J.C., Qin, X., Xie, Z. and Chen, S.Y. (2023), "A meshless method for geometric nonlinear analysis of arbitrary polygonal and circular stiffened plates", Int. J. Nonlin. Mech., 148, 104233. https://doi.org/10.1016/j.ijnonlinmec.2022.104233.
  28. Phuong, N.T., Dong, D.T., Van Doan, C. and Nam, V.H. (2023), "Nonlinear buckling of stiffened FG-GRCL cylindrical panels under axial compression with the uniformly distributed temperature variation", Eur. Phys. J. Plus, 138(3), 234. https://doi.org/10.1140/epjp/s13360-023-03841-5.
  29. Qolipour, A.M., Eipakchi, H. and Nasrekani, F.M. (2023), "Asymmetric/Axisymmetric buckling of circular/annular plates under radial load first-order shear deformation", Thin Wall. Struct., 182(A), 110244. https://doi.org/10.1016/j.tws.2022.110244.
  30. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H.H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  31. Salari, E., Ashoori, A.R., Vanini, S.A.S. and Akbarzadeh, A.H. (2022), "Nonlinear dynamic buckling and vibration of thermally post-buckled temperature-dependent FG porous nanobeams based on the nonlocal theory", Phys. Scripta, 97(8), 085216. https://doi.org/10.1088/1402-4896/ac8187.
  32. She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sinica, 39(2), 522392. https://doi.org/10.1007/s10409-022-22392-x.
  33. She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
  34. She, G.L., Li, Y.P., He, Y.J. and Song, J.P. (2024), "Thermal post-buckling analysis of graphene platelets reinforced metal foams beams with initial geometric imperfection", Comput. Concrete, 33(3), 241-250. https://doi.org/10.12989/cac.2024.33.3.241
  35. Shokrieh, M.M., Esmkhani, M., Shokrieh, Z. and Zhao, Z. (2014), "Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular dynamics-micromechanics method", Comput. Mater. Sci., 92, 444-450. https://doi.org/10.1016/j.commatsci.2014.06.002.
  36. Song, J.P. and She, G.L. (2024), "Nonlinear resonance and chaotic dynamic of rotating graphene platelets reinforced metal foams plates in thermal environment", Arch. Civil Mech. Eng., 24(1), 45. https://doi.org/10.1007/s43452-023-00846-w.
  37. Song, J.P., He, Y.J. and She, G.L. (2024a), "Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions", Steel Compos. Struct., 50(2), 149-158. https://doi.org/10.12989/scs.2024.50.2.149.
  38. Song, J.P., She, G.L. and Eltaher, M.A. (2024c), "Nonlinear aero-thermo-elastic flutter analysis of stiffened graphene platelets reinforced metal foams plates with initial geometric imperfection", Aerosp. Sci. Technol., 147, 109050. https://doi.org/10.1016/j.ast.2024.109050.
  39. Song, J.P., She, G.L. and He, Y.J. (2024b), "Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads", Geomech. Eng., 36(2), 99-109. https://doi.org/10.12989/gae.2024.36.2.099.
  40. Sun, D. and Luo, S.N. (2012), "Wave propagation and transient response of a functionally graded material plate under a point impact load in thermal environments", Appl. Math. Model., 36(1), 444-462. https://doi.org/10.1016/j.apm.2011.07.023.
  41. Wang, W.B., Xue, G. and Teng, Z.C. (2022), "Analysis of free vibration characteristics of porous fgm circular plates in a temperature field", J. Vib. Eng. Technol., 10(4), 1369-1380. https://doi.org/10.1007/s42417-022-00452-9.
  42. Wang, Y.W. and Wu, D.F. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
  43. Wang, Y.W. and Zhang, W. (2022), "On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams", Compos. Struct., 296, 115880. https://doi.org/10.1016/j.compstruct.2022.115880.
  44. Williams, J.R., DiCarlo, L. and Marcus, C.M. (2007), "Quantum hall effect in a gate-controlled p-n junction of graphene", Sci., 317(5838), 638-641. https://doi.org/10.1126/science.1144657.
  45. Yang, Q.T., Liao, J.H., Fan, X.M., Luo, J.T. and Fu, C. (2023), "Trapped degenerate modes in an embedded-core flat circular plate", J. Sound. Vib., 552, 117643. https://doi.org/10.1016/j.jsv.2023.117643.
  46. Zaman, I., Phan, T.T., Kuan, H.C., Meng, Q.S., La, L.T.B., Luong, L., Youssf, O. and Ma, J. (2011), "Epoxy/graphene platelets nanocomposites with two levels of interface strength", Polym., 52(7), 1603-1611. https://doi.org/10.1016/j.polymer.2011.02.003.
  47. Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2021), "A review approach for sound propagation prediction of plate constructions", Arch. Comput. Method. Eng., 28(4), 2817-2843. https://doi.org/10.1007/s11831-020-09482-6
  48. Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2022), "Prediction of acoustic wave transmission features of the multilayered plate constructions: A review", J. Sandw. Struct. Mater., 24(1), 218-293. https://doi.org/10.1177/1099636221993891.
  49. Zavari, S., Kaveh, A., Babaei, H., Arshid, E., Dimitri, R. and Tornabene, F. (2024), "A quasi-3D hyperbolic formulation for the buckling study of metal foam microplates layered with graphene nanoplatelets-embedded nanocomposite patches with temperature fluctuations", Compos. Struct., 331, 117876. https://doi.org/10.1016/j.compstruct.2024.117876. 
  50. Zhang, Y.W. and She, G.L. (2024a), "Nonlinear combined resonance of axially moving conical shells under interaction between transverse and parametric modes", Commun. Nonlin. Sci. Numer. Simul., 131, 107849. https://doi.org/10.1016/j.cnsns.2024.107849.
  51. Zhang, Y.W. and She, G.L. (2024b), "Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration", Eng. Struct., 300, 117177. https://doi.org/10.1016/j.engstruct.2023.117177.
  52. Zhang, Y.W. and She, G.L. (2024c), "Investigation on internal resonance of fluid conveying pipes with initial geometric imperfection", Appl. Ocean Res., 146, 103961. https://doi.org/10.1016/j.apor.2024.103961.
  53. Zhu, Y.H. and Heidari, M. (2023), "Nonlinear dynamic snap-through and vibrations of temperature-dependent FGM deep arch under sudden thermal shock", Struct., 48, 1620-1633. https://doi.org/10.1016/j.istruc.2023.01.085.