• 제목/요약/키워드: Proof-of-Work

Search Result 173, Processing Time 0.024 seconds

Evaluation of the thermal environments and the workload of farmers during the spraying pesticide in the rice field (농약 방제 작업자의 작업 환경 및 노동 부담 평가)

  • 최정화;이주영
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.11
    • /
    • pp.1672-1681
    • /
    • 2002
  • To evaluate the thermal environments and the workload of farmers in the rice field in summer, this study investigated rice farmers' physiological, psychological responses, work postures, work clothes, air temperature and air humidity during the spraying pesticide in the rice field. Five career farmers (3 males, 2 females) volunteered as the subjects. During the spraying pesticide in the rice field, physiological responses were monitored continuously. The results were as follows. l. Farmers wore only raincoats not pesticide-proof clothing. 2. The value of WBGT, rectal temperature($T_{re}$), mean skin temperature(${\={T}}_{sk}$) were $24.9∼28.9^{\circ}C,\;37.8({\pm}0.3)^{\circ}C\;and\;33.6({\pm}0.6)^{\circ}C$, respectively. Clothing microclimate temperature($T_{cl}$) on the chest and back were $32.5({\pm}2.6)^{\circ}C\;and\;33.6({\pm}2.6)^{\circ}C$, respectively(p<0.00l). Humidity inside of the clothing ($H_{cl}$) was over 80%RH and heart rate(HR) was 112(${\pm}27$)bpm. We evaluated that the spraying pesticide was 'heavy work' by the Tre and HR. To four subjective questionnaires, all farmers expressed 'hard, hot, humid and uncomfortable' without individual difference at the end of works. We suggested that 1) the spraying pesticide in the rice field was a heavy work, 2) because the workload of farmers in the raincoat/pesticide-proof clothing can't be evaluated by only WBGT, assessors should measure physiological, psychological responses as well as thermal environments, 3) to alleviate farmers' heat strain, clothing manufacturers must consider not only the improvement of textile materials and clothing weight but also the designing of personal cooling equipment.

Hardcopy Proof Profiling for the Optimization Of Printing Process (인쇄 공정의 최적화를 위한 하드카피 프루프 프로파일링)

  • Cha, Jae-Young;Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.25-42
    • /
    • 2010
  • One of the important roles of worflow is color management. In general, color management technique, which is called CMS(color management system), is a method to solve problems that show different characteristics of color regeneration in output devices, and the characteristics of output devices is created in data file called ICC(International Color Consortium) profile. In addition, ICC profile is used to manage color in workflow, and includes other functions, process management and printing quality management. In domestic printing market, workflow is in the pipeline at rapid speed along with CTP, and use of ICC profile required for color management is also in rapid progress. Therefore, this paper produced optimal ICC profile through experiment from the work of linearizing devices used in each field to color conversion work. Moreover, the paper confirmed how ICC profile will be used in printing field. In the profiling experiment based on hardcopy proofing, photographed copy and chrominance were compared by printing out in proof the image created through application and color conversion with the use of camera profile and proof profile produced in colorimetric method. By evaluating if color is expressed accurately from input to output through colorimetric color conversion experiment as above, the paper intended to propose color management method using optimal profile in printing process.

Design and evaluation of the thermal capability to secure a working time of cryogenic explosion-proof camera in LNG carrier tank

  • Kang, Geun-Il;Kwak, Si-Young;Park, Chun-Seong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.568-576
    • /
    • 2017
  • With an increase in the usage of LNG, there is a heightened interest about its safety aspects regarding the explosion of LNG carrier tank. The need for a cryogenic explosion-proof camera has increased. The camera has to work in cryogenic environment (below $-160^{\circ}C$) in LNG carrier. This study conducted design and heat transfer analysis of cryogenic camera to secure working time in limitation of heat source. The design with gap width of double pane windows was conducted based on simple vertical cavity model to insulate from cryogenic environment. The optimal gap width was 12.5 mm. For effective analysis considering convection within the camera, equivalent thermal conductivity method was adopted with ABAQUS. The working time of the camera predicted was over 10 h at warm-start condition. In cold-start condition, it required about 5 h of pre-warming time to work. The results of analysis were compared with the ones of the actual cryogenic test.

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system

  • Munir, Ahsan;Zhu, Zanzan;Wang, Jianlong;Zhou, H. Susan
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2013
  • Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.

A study on the Development of an Eco-friendly Rooftop Waterproofing Method (친환경 옥상방수공법 개발에 관한 연구)

  • Oh, Dong-Sik;Go, Seong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.103-111
    • /
    • 2010
  • This research aims to make a contribution to the development of waterproofing technique for rooftops by analyzing and understanding the problems of the currently used waterproofing method and their causes. To do this, this research developed an eco-friendly waterproofing method that supplements the weaknesses of the conventionally used method by analyzing the problems of leakage resulting from design and construction work to diminish leakage, improving the quality of construction work, reducing labor required and the period of construction, and improving environment alconditions. The characteristics of the newly developed method are comparatively analyzed with the convention alpractices, and are evaluated on the site.

Development of Integrated CAE System for Mechanical Shock Proof Design of TFT-LCD Modules (TFT-LCD 모듈의 내충격성 향상을 위한 통합 CAE 시스템의 개발)

  • 서형원;문성인;구자춘;최재붕;김영진;최성식;이정권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.135-141
    • /
    • 2004
  • Anti-shock performance is one of the most important design specifications of TFT-LCD modules. Since they are adopted fur major display units of many mobile applications such as lap-top PCs, cellular phones, and palm pilots, they are able to accommodate and endure high level transient mechanical energy inputs. For the reasons, not only the LCD unit manufacturers but their customers like PC makers perform a series of strict impact/drop test on the units. Currently, designers are mostly relying on their own trial-error based experience for the anti-shock design. Thus those designs depending on only experience may result in disqualification from the drop/impact test during final product evaluation. Those shock failures of any new designs are prohibitive for both LCD and PC manufacturers. In order to avoid this problem, many designers are focusing on the development of computer-aided design tools that is directly connected to shock simulation capabilities and then shock-proof design cycle time could be significantly reduced. Development of an integrated CAE system for the shock-proof design is presented in this article. At every stages of the development of present work, practical industrial applicability and mass production feasibility are seriously considered and tested so that the system is to be used in the LCD design engineering field.

Evaluation Framework for Practical Byzantine Fault Tolerant based Consensus Algorithms (프랙티컬 비잔틴 장애 허용 기반의 합의 알고리즘의 평가 프레임워크)

  • Lee, Eun-young;Kim, Nam-ryeong;Han, Chae-rim;Lee, Il-gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.249-251
    • /
    • 2021
  • PBFT (Practical Byzantine Fault Tolerant) is a consensus algorithm that guarantees higher processing speed compared to PoW (Proof of Work) and absolute finality that records are not overturned due to the superiority of computing power. However, due to the complexity of the message, there is a limit that the network load increases exponentially as the number of participating nodes increases. PBFT is an important factor in determining the performance of a blockchain network, but studies on evaluation metrics and evaluation technologies are lacking. In this paper, we propose a PBFT evaluation framework that is convenient to change the consensus algorithm to easily evaluate quantitative indicators and improved methods for evaluating PBFT.

  • PDF

ON SOME RESULTS OF BUMP-CHOIE AND CHOIE-KIM

  • Hundley, Joseph
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.559-581
    • /
    • 2013
  • This paper is motivated by a 2001 paper of Choie and Kim and a 2006 paper of Bump and Choie. The paper of Choie and Kim extends an earlier result of Bol for elliptic modular forms to the setting of Siegel and Jacobi forms. The paper of Bump and Choie provides a representation theoretic interpretation of the phenomenon, and shows how a natural generalization of Choie and Kim's result on Siegel modular forms follows from a natural conjecture regarding ($g$, K)-modules. In this paper, it is shown that the conjecture of Bump and Choie follows from work of Boe. A second proof which is along the lines of the proof given by Bump and Choie in the genus 2 case is also included, as is a similar treatment of the result of Choie and Kim on Jacobi forms.

The CO Gas Concentration Characteristics in a Sound Proof Road Tunnel According to the Upper Opening Installation Distance Interval (방음터널 내부의 상부배출구 간격에 따른 CO 농도분포 특성)

  • Park, Myung Sig
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.162-169
    • /
    • 2016
  • When we construct a road near an apartment complex, we consider a soundproof wall. To make residential places quieter, we may consider a soundproof road tunnel. Such a tunnel, however, would become highly concentrated with soot from vehicles whenever a traffic jam might occur. To create an optimum design, this study utilizes the PHOENICS-VR software. The work considers three cases: (1) no openings (2) openings at 30m intervals, and (3) openings at 60m intervals on the upper side of the tunnel. The study finds that in the second case shows CO concentration distributions were 15% less than those without openings. And the CO concentration distributions of the second and third cases are almost the same. The findings suggest that we should make the soundproof tunnel to reduce construction fees.