• Title/Summary/Keyword: Proof learning

Search Result 105, Processing Time 0.02 seconds

A Study on the Historic-Genetic Principle of Mathematics Education(1) - A Historic-Genetic Approach to Teaching the Meaning of Proof (역사발생적 수학교육 원리에 대한 연구(1) - 증명의 의미 지도의 역사발생적 전개)

  • 우정호;박미애;권석일
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.401-420
    • /
    • 2003
  • We have many problems in the teaching and learning of proof, especially in the demonstrative geometry of middle school mathematics introducing the proof for the first time. Above all, it is the serious problem that many students do not understand the meaning of proof. In this paper we intend to show that teaching the meaning of proof in terms of historic-genetic approach will be a method to improve the way of teaching proof. We investigate the development of proof which goes through three stages such as experimental, intuitional, and scientific stage as well as the development of geometry up to the completion of Euclid's Elements as Bran-ford set out, and analyze the teaching process for the purpose of looking for the way of improving the way of teaching proof through the historic-genetic approach. We conducted lessons about the angle-sum property of triangle in accordance with these three stages to the students of seventh grade. We show that the students will understand the meaning of proof meaningfully and properly through the historic-genetic approach.

  • PDF

A Study on Teaching Mathematical Proofs of the Middle School Students Using the 'Poof Assisted Cards' (증명보조카드를 활용한 중학생의 증명지도에 관한 연구)

  • Cho, Cheong-Soo;Lee, Jeong-Ja
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.4
    • /
    • pp.521-538
    • /
    • 2006
  • The purpose of this study is to examine the effect of teaching mathematical proofs that made use of the 'proof assisted cards' at the second year of middle school and to investigate students' ability to geometric proofs as well as changes of mathematical attitudes toward geometric proofs. The subjects are seven students at the 2nd year of D Middle School in Daegu who made use of the 'proof assisted cards' during five class periods. The researcher interviewed the students to investigate learning questions made by students as well as the 'proof assisted cards' before and after use. The findings are as follows: first, the students made change of geometric proof ability by proof activity with the 'proof assisted cards' and second, the students made significant change of mathematical attitudes toward geometric proofs by proof activity using the cards.

  • PDF

How to develop the ability of proof methods?

  • Behnoodi, Maryam;Takahashi, Tadashi
    • Research in Mathematical Education
    • /
    • v.13 no.3
    • /
    • pp.217-233
    • /
    • 2009
  • The purpose of this study is to describe how dynamic geometry systems can be useful in proof activity; teaching sequences based on the use of dynamic geometry systems and to analyze the possible roles of dynamic geometry systems in both teaching and learning of proof. And also dynamic geometry environments can generate powerful interplay between empirical explorations and formal proofs. The point of this study was to show that how using dynamic geometry software can provide an opportunity to link between empirical and deductive reasoning, and how such software can be utilized to gain insight into a deductive argument.

  • PDF

A Study on Improvement of Introductions and Applications of 'Proof by Contradiction' in Textbooks (교과서의 귀류법 도입과 활용에 대한 고찰 및 개선 방안)

  • Lee, Gi Don;Hong, Gapju
    • School Mathematics
    • /
    • v.18 no.4
    • /
    • pp.839-856
    • /
    • 2016
  • In 2009 revision and 2015 revision mathematics national curriculum, 'proof' was moved to high school from middle school in consideration of the cognitive development level of students, and 'proof by contradiction' was stated in the "success criteria of learning contents" of the first year high school subject while it had been not officially introduced in $7^{th}$ and 2007 revision national curriculum. Proof by contradiction is known that it induces a cognitive conflict due to the unique nature of rather assuming the opposite of the statement for proving it. In this article, based on the logical, mathematical and historical analysis of Proof by contradiction, we looked about the introductions and the applications of the current textbooks which had been revised recently, and searched for improvement measures from the viewpoint of discovery, explanation, and consilience. We suggested introducing Proof by contradiction after describing the discovery process earlier, separately but organically describing parts necessary to assume the opposite and parts not necessary, disclosing the relationships with proof by contrapositive, and using the viewpoint of consilience.

Looking at HPM through an Old Chestnut: Sum of the Angles of a Triangle

  • Siu, Man Keung
    • Journal for History of Mathematics
    • /
    • v.26 no.5_6
    • /
    • pp.345-353
    • /
    • 2013
  • Some teachers do not regard the computation of the sum of the angles of a triangle by using a cut-and-paste or paper-folding method as providing a proof that the sum of the angles of a triangle is equal to two right angles. Some even think that this way of working is not mathematics but more like an experiment in physics. Some see the method as no better than measurement of the angles by a protractor. The author will examine this issue in the teaching and learning of school geometry and more generally as a specific example from the perspective of HPM (History and Pedagogy of Mathematics).

Analysis on Students' Abilities of Proof in Middle School (중학교 학생의 증명 능력 분석)

  • 서동엽
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.183-203
    • /
    • 1999
  • In this study, we analysed the constituents of proof and examined into the reasons why the students have trouble in learning the proof, and proposed directions for improving the teaming and teaching of proof. Through the reviews of the related literatures and the analyses of textbooks, the constituents of proof in the level of middle grades in our country are divided into two major categories 'Constituents related to the construction of reasoning' and 'Constituents related to the meaning of proof. 'The former includes the inference rules(simplification, conjunction, modus ponens, and hypothetical syllogism), symbolization, distinguishing between definition and property, use of the appropriate diagrams, application of the basic principles, variety and completeness in checking, reading and using the basic components of geometric figures to prove, translating symbols into literary compositions, disproof using counter example, and proof of equations. The latter includes the inferences, implication, separation of assumption and conclusion, distinguishing implication from equivalence, a theorem has no exceptions, necessity for proof of obvious propositions, and generality of proof. The results from three types of examinations; analysis of the textbooks, interview, writing test, are summarized as following. The hypothetical syllogism that builds the main structure of proofs is not taught in middle grades explicitly, so students have more difficulty in understanding other types of syllogisms than the AAA type of categorical syllogisms. Most of students do not distinguish definition from property well, so they find difficulty in symbolizing, separating assumption from conclusion, or use of the appropriate diagrams. The basic symbols and principles are taught in the first year of the middle school and students use them in proving theorems after about one year. That could be a cause that the students do not allow the exact names of the principles and can not apply correct principles. Textbooks do not describe clearly about counter example, but they contain some problems to solve only by using counter examples. Students have thought that one counter example is sufficient to disprove a false proposition, but in fact, they do not prefer to use it. Textbooks contain some problems to prove equations, A=B. Proving those equations, however, students do not perceive that writing equation A=B, the conclusion of the proof, in the first line and deforming the both sides of it are incorrect. Furthermore, students prefer it to developing A to B. Most of constituents related to the meaning of proof are mentioned very simply or never in textbooks, so many students do not know them. Especially, they accept the result of experiments or measurements as proof and prefer them to logical proof stated in textbooks.

  • PDF

A second-order iterative learning control method

  • Bien, Zeungnam;Huh, Kyung-Moo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.734-739
    • /
    • 1988
  • For the trajectory control of dynamic systems with unidentified parameters a second-order iterative learning control method is presented. In contrast to other known methods, the proposed learning control scheme can utilize more than one error history contained in the trajectories generated at prior iterations. A convergency proof is given and it is also shown that the convergence speed can be improved in compared to conventional methods. Examples are provided to show effectiveness of the algorithm, and, via simulation, it is demonstrated that the method yields a good performance even in the presence of distubances.

  • PDF

Cognitive Psychological Approaches on Analysing Students' Mathematical Errors (인지심리학의 관점에서 수학적 오류의 분석가능성 탐색)

  • 김부미
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.3
    • /
    • pp.239-266
    • /
    • 2004
  • This article presents new perspectives for analysing and diagnosing students' mathematical errors on the basis of Pascaul-Leone's neo-Piagetian theory. Although Pascaul-Leone's theory is a cognitive developmental theory, its psychological mechanism gives us new insights on mathematical errors. We analyze mathematical errors in the domain of proof problem solving comparing Pascaul-Leone's psychological mechanism with mathematical errors and diagnose misleading factors using Schoenfeld's levels of analysis and structure and fuzzy cognitive map(FCM). FCM can present with cause and effect among preconceptions or misconceptions that students have about prerequisite proof knowledge and problem solving. Conclusions could be summarized as follows: 1) Students' mathematical errors on proof problem solving and LC learning structures have the same nature. 2) Structures in items of students' mathematical errors and misleading factor structures in cognitive tasks affect mental processes with the same activation mechanism. 3) LC learning structures were activated preferentially in knowledge structures by F operator. With the same activation mechanism, the process students' mathematical errors were activated firstly among conceptions could be explained.

  • PDF

A Distance Approach for Open Information Extraction Based on Word Vector

  • Liu, Peiqian;Wang, Xiaojie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2470-2491
    • /
    • 2018
  • Web-scale open information extraction (Open IE) plays an important role in NLP tasks like acquiring common-sense knowledge, learning selectional preferences and automatic text understanding. A large number of Open IE approaches have been proposed in the last decade, and the majority of these approaches are based on supervised learning or dependency parsing. In this paper, we present a novel method for web scale open information extraction, which employs cosine distance based on Google word vector as the confidence score of the extraction. The proposed method is a purely unsupervised learning algorithm without requiring any hand-labeled training data or dependency parse features. We also present the mathematically rigorous proof for the new method with Bayes Inference and Artificial Neural Network theory. It turns out that the proposed algorithm is equivalent to Maximum Likelihood Estimation of the joint probability distribution over the elements of the candidate extraction. The proof itself also theoretically suggests a typical usage of word vector for other NLP tasks. Experiments show that the distance-based method leads to further improvements over the newly presented Open IE systems on three benchmark datasets, in terms of effectiveness and efficiency.

The Reliability and Validity of Online Peer Assessment on Proofs in a Number Theory Course (증명 동료평가의 신뢰도 및 타당도 분석: 대학 정수론 수업의 사례를 중심으로)

  • Oh, Yaerin;Kwon, Oh Nam;Park, Jooyong
    • The Mathematical Education
    • /
    • v.57 no.3
    • /
    • pp.215-229
    • /
    • 2018
  • Despite the importance of learning to do mathematical proofs, researchers have reported that not only secondary school students but also undergraduate students have difficulties in learning proofs. In this study, we introduced a new toll for learning proofs and explored the reliability and the validity of peer assessment on proofs. In the course of a university in Seoul, students were given weekly proof assignments prior to class. After solving the proofs, each student had to assess other students' proofs. The inter-rater reliabilities of weekly peer assessment was higher than .9 over 90 percent of the observed cases. To examine the validity of peer assessment, we check whether students' assessments were similar to expert assessment. Analysis showed that the equivalence has been quite high throughout the semester and the validity was low in the middle of the semester but rose by the end of the semester. Based on these results, we believe instructors can consider the application of peer assessment on proving tasks as a tool to help students learn.