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Abstract---  For the trajectory control of dynamic systems with
unidentified parameters, a sccond-order iterative lcarning control method
is presented. In contrast to other known methods, the proposed learning
control scheme can utilize more than one error history contained in the
trajectorics generated at prior itcrations. A convergency proof is given
and it is also shown that the convergence speed can be improved in com-
pared to conventional methods. Examples are provided to show cffec-
tiveness of the algorithm, and, via simulation, it is demonstrated that the

mcthod yiclds a good performance even in the presence of disturbances.

1. Introduction

As a means of controlling a plant whose dynamics is not fully
known in advance or changes in an unknown but slow manner, the
approach of adaptive control has been intensively studied for more than a
decade.  There have been reporied many examples of successful applica-
tions of the method, especially when the objective of control is regulation
function. The class of systems for which the adaptive control method
such as MRAC or STR can be applied is rather limited, however, and
the scheme can be very complicated or inappropriate as a real-time con-
trol method for complex systems such as robot manipulators. In
particular, the adaptive control systems can be helpless for the case
when the output of the plant needs to be tightly controlled all the time
along a prespecilicd path as in the task of robot trajectory tracking ; the
method does not guarantec that the output at initial or intermediary time

points remains within a specified error bound of tolerance.

Recently, a novel control mcthod, called "lcarning control”, is
getling increasing attcntion as an alternative for controlling uncertain
dynamic systems in a simple manner. It is a recursive on-line control
method that rclies on less calculation and requires less a priori

knowledge about the system dynamics.

First of its kind to note is the learning control method proposed
by Uchiyama [2] and elaborated as a more formal thcory by Arimoto
and his associates{3). The idea is to use a simple algorithm repetitively
to an unknown plant to achieve a perfect tracking. The algorithm is of

the form
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e (0) = ue(t) + Tér(t)

8

where u (1) is the control input at the k-th iteration and eg(¢) denotes
the error between the actual system output y, (1) as a response 10 #g (1)

and the desired output y4(1) ,i.c.
ex(t) =ya(t) — yult) .

I"is a gain factor, When this simple algorithm is applied repeatedly
for a class of not-neccssarily time-invariant unknown systems, it was
proved that the time derivative of the output converges to the time deriva-
tive of the desired trajectory of the system. This method was reported
applicable, for example, for speed control of robotic manipulators with
repetitive tasks. The original proposition was novel and attractive in
concept : the algorithm is simple o calculate and apparently independent
of the plant dynamics. This iterative control algorithm is called a kind of
learning algorithm in the sense that the quality of control is improved in
repetition and eventually the system learns to track the commanded tra-
jectory.

However, this learning control in its initial form suffers from a

few drawbacks such as:

- the algorithm utilizes a noncausal operator(i.e. diffcrentiator) and
- the positional convergence is not guaranted : instead, the velocity y (1)
was proved o converge to the desired velocity ya(¢).

The method has been refined and expanded in many ways. For
example, Arimoto and his associates[5] showed the positional conver-
gence in L ,-sense.  Also, Craig in [6] proposed a modified algorithm for

better performance of the form

e (1) = (1) + p (£)*er(t) @

where p(t) is a given time function denoting the implulse response of a
linear filter and * denotes the convolution integral operation.

As a means of avoiding noncausal operation such as the time dif-
ferentiation in (1), Gu and Loh[7] proposed to use difference operation

for digital realization in such a way (hat the algorithm becomes

wea1 (V) = we(¥) + E;G/ek(iﬂ—l) ©)
=



Recently, Oh,Bien and Suh{8] combined the concept of the above
learning control algorithm with the structure of an adaptive system to

introduce an algorithm of the form

up () = up(t) + [BkBi I ' B (e (1 -Arer) C)

where {4, ,B_,,] is a linear system model that is available at k-th iteration,
and is updated by using some parameter estimator. We may also find a
discretc-time approach of leaming control theory in [9] and a robust

learning algorithm presented in Furuta and Yamakita[10].

Note that, in all the algorithms in the above discussion, the control
ug+1{1) is synthesized from only one single history data pair (u(t ),ex(¢)).

In this paper, we propose that ug,1(r) be synthesized {from multiple
past history data pairs (ux(t),ex (1)), (Ux-1(t )iex—1(¢)) to enhance the con-
vergence performance of the algorithm and at the same time make the
system to be more robust to disturbances causing loss of information.
For the sake of distinction, we shall call the iterative lcarning algorithm
to be of first order if only one data pair (ux{¢),ex (#)),0<¢<T' is used to
generate ug4{1),0s0<T as in (1) while the algorithm is called a second-
order algorithm if 2 consecutive pairs (ug(t),ex(1)).(4x-1(t),ex-1(1)) arc
used for synthesizing ue.1(1).

In the sequel, the notation convention is as follows :
Foramatrix A, the transpose of A is denoted as A’
For a finite dimensional vector x, |lx |1 denotes the Euclidean norm.

Also the following vector norm and the matrix norm are defined

Hf . = max 1f @) when f=(fM,. .. )

- [02) =(p GJ)
NG, = {r;'aé{z_‘ilg M) when G=(g@)

2. Second-Order Iterative Learning Control Method for Linear

Time-Invariant Sysiems

To present the theory more efficiently, we shall first examine in
this section a 2nd-order iterative learning control algorithm for linear
time-invariant systems.

Consider the linear time-invariant dynamical system

W =Ax(@)+B u(t), x(0=&°

y()=C x(1)+D u(t) )
where x and u denote an nx1 state vector and a px1 control vector

>

respectively, and y is an mx1 output vector. Suppose the matrices

A B ,C and D are not known.

Let y4(r),0<1<T be given the desired output trajectory and £'>0
be given as a tolerance bound. We wish to find a control function
u(1),0<t<T such that the comresponding output trajectory y(¢) of the

linear system in eq.(5) satisfies
E@U)=1lyst)—y(@)ll <e*, 0st<T, (6)

Since the dynamics is not known, the tracking problem that we consider

is not trivial ; we will seek a solution by an iterative learning method.
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For this, let the suffix £ denote the iteration ordinal number of trial such
that, for example, y,(¢) is the value of the system output at time ¢, 0<¢<T,

at the k-th operation,etc. The notations ex(r), xx(t), and ue (1) will be

similiarly defined.
As a solution method, we propose a new type of iterative learning control
of the form
Upaa(t) = Prug(t) + Poup (1) + Qree (1) + Q pep 1 (1) Q)]
where ex(t)= ya(t) -y () ®

In Fig.1 is shown the algorithm schematically. We call this type of
learning control algorithm as a "second order iterative learning control”
because data stored at kth iteration and (k-1)th iteration are used to
obtain the (k+1)th iteration control. It is observed that for fixed ¢, the
algorithm in (7) is a 2nd-order difference equation in the iteration number
k.

first order iterative learning control.

In this context, the method in [3], for example, may be called as a

As in [3], we now show that, under certain conditions, the algo-

rithm in (7) results in convergence for output tracking.

Theorem 1.

Given the unknown LTI system equation (5) at known initial state
x(0)=E&° and the desired output y,(¢).0<t <7, suppose the algorithm (7)
is applicd under the following two conditions,

A1) Pi+Py=1

A2) 11P1~Q D1 la+ HP2-QaD 1., <1

If uo(r),0e<T is chosen 10 be a continuous function, and the initial
Sstates at each iteration are reset to be x(¢)= €9, for each &, then,

Yel) > ya(t) on1e[0T] as k oo,

Proof.

Let uy(t), x4(t) be control input and system state respectively
corresponding to the desired output yu(¢).
(5),(D.(8) and (A1) that

It follows from equations

Uug(O)uear(t) = P rlua(ty-un(t)) + P o(itg(0 w1 (1)) - O {Crxa(e 1+ Dug(t)
~Core()=Dur()) = Q2 C (a0 M+ Ditg(t 3-Coxs(1))-Dit s (1)}
= (Pr=Q 1D Yua(t -1 (8)) + (P20 2D Yttty (£))
= Q1€ (ralt )y xx(t)) — Q 2C Rt Y21 (1)) ©®
Taking norms  gives
g 1)1 e S 1P 1=0D 1l lig(6 -t (1)) | +1 1P -Q oD 1

g 110 L+ 11Q1C T g (22 (0) | |

+ 1Q5C Nal g5y e forall te[0T]. 10)
Now since x(0)=x4(0) for all k , we have, for t[0,T],
Hxa@2 @l e = 1 [ (fAxa(D+Bug—(Axy B (Pl 1.

< [TNANL @@ o+ VB 1o i@ 1 JdT (1)

Applying the Bellman-Gronwall Lemma [11], we get



I xg(8)y—xe(e)1 1 SL‘I 1B V1ol Vg (T)y~tai(T) | Voo @€ T 12)
forall te (0], where a=1141}. .

Therefore, combining (10) and (12), we sce that, with du(t)=
ug(t - (r)
D181t e < 011 18U ()1 1ot L2 180y (1)1 1
+m,L'| | Sug (T I,ﬂc“("‘)d’t+mzfl 1 8ug-1(T)} | e 2CDd T 13)
where 11=11P1—Q D le, Ip=11P2-QD 1.
mi=1101C Il IBila, ma=11QCI1IlIBIL,
Now, define
HAOH,, 2 S e MR a .
Multiplying (13) by the positive function e™ | wechave
e M8 1o € L1e 118w ()1l + 126 1 181g-1() 1 1
[ e 1 Bua(T)1 | @D Tm 2f €1 1811 (D) | e @Rt
< D8 s + Lol 18 (D1 1y,
+maf 118 1 e @DdT+ [ 11 €) ] 1 e BT
for all te{0,T] (14)

Thercfore,
N8 1a € [+ o (1-e @D JHEw (1 1a

+ [+ 1”‘72—(1? @NTY ] 1 Sug-y() | 1 (15)

Now, it is not too difficult to show that 1 18u(-}! 1, —0 as k—ee if

M1 1_pla—nT M2 (q_glaNT
[l]+1_—a(l € )]+[12+m(1 ela- )] < 1
is satisfied.  In fact, a nonnegative sequence {wi},k=1,2,3,.. with the
property

Wiz S T wea + S we (r,5>0)
converges to zero if r+s<1 holds.

Since [,+{2<1 from the assumption (A2), it is possible to choose A>0

large enough so that

Itz (1-e @M gT2 (1—g @ W) < 1 . 16)
Thus 1 18u()1 15, =0 as k—eo. By the definition of 11 |15, we know
that

S 8ue () < e 1HBug() 11 .
Therefore, S5 1 18ue(t)1 1 =0 as k—eo and this means

ue(t) — ua(t) as k—eo on te[0T]. an
Furthermore, (12) implics

xe (1) = x4(t) as k—ee on tel0,T]. 18)
Thus, from (5),(17).(18)

yet) = yat) as k—eo on 1€[0,T].

[QED]

Remark 1:

The proposed method can be proved to be applicable for a class

of nonlincar dynamic systems.

Remark 2 :

In the proposed method, we can observe that if the controlled sys-

tem is of the form (5) with nonzero D term, the method does not require
any time-derivative operation. This fact makes the learning process to be

cffective even in the case where we can’t measure the velocity or
acceleration signal. This observation is in agreement with that of Sugie
and Ono’s in [12], where they reported D term plays a crucial role in the

error convergence,

3. Examples with Comments

The proposed algorithm in the paper is less simple than most of the
existing methods, e.g., that of Arimoto[3], but can be more effective in
"learning and control”, for therc arc more freedoms for adjustment for
fast convergence. Further, our algorithm can be less sensitive to tem-
poral disturbances injected in the current measurement y,(t) because the
control action ug.i(f) utilizes previous measurcments y;(¢),j<k, as

well.

To be specific, consider the linear time-varying plant whose

dynamics is described by

[;;8;]= [7(2(15[) —(312:)] [§5253]+ [(1)] u(t), [§;§8§}= [8]95’51
Y@ =101] {;;8;} 19

The plant (19) is assumed 10 be periodic in ¢ with period T'=1.
Let the desired output trajectory yu(t), t€ [0,1] to track be given by

ya(t)y=12¢%1-1) . (20

It is remarked that, as a formal notation for periodicity, the vari-
able t of matrix A (¢) in eq.(19) and right-hand side of cq.(20) may be
replaced by t—{t1, where [r] is the Gaussian number of ¢, such that the
system is periodic with T'=1.

In three numerical cxamples in the following, we shall apply the

2nd-order algorithm of Section 2 for conciseness of presentation.

Example 1 : First, supposc the dynamics of the plant (19) is

known. Instead of applying advanced control techniques such as LQ
optimal controller, we apply the learning control algorithm repeatedly
until satisfactory performance is obtained as in [3][8]).

As in (8], let € =0.06 , and Ict initial input uo(r), for 1€ (0,11 be

given by
uo(t)=0, 0<t<l1. 21

Itis noted that, since y(t)=C x(t)=CA x(t)+ CB u(t), we find



p=ca=ioy [f]-1. @)

Then we can obtain yx(z) for the k-th iteration, as shown in Fig.2(a).
the ) be
Pi=1.1, P,=-0.1, 0=14, Q»=-0.15. we can

observe that six iterative trials are sufficient to generate a trajectory

Here, control  gains in are chosen to

From this figure,

which is within £” -bound of the desired trajectory y4(t).
To compare the effectiveness of our leaming control method with
Arimoto’s method in [3], let’s recall that their algorithm gives the con-

vergence condition as follows :

11I-CBTIl < 1. (23)

The gain I’ was chosen to be unity (o get a best convergence rate and
via simulation, we found that eleven iterations were needed 1o generaie
a trajectory within €'-bound of the desired trajectory as shown in
Fig.2(b).

Example 2 : Considor the case that the dynamics is unknown.

This time, let " =0.1. Since D =CB is unknown, we shall replace
D in (A2) with guessed modcl value Dy =0.5 and choose P,P2,Q01
thus we choose P;=0.8, #,=0.2,

The resulted y.(¢) for the £-th iteration is shown in

and Q, for a best convergence :
01=16, Q=04.
Fig.3(a), in which we can observe that only cight iierative operations are
sufficient to generate a trajectory within £°-bound of the desired trajec-
tory.

In this case, if we apply the Arimoto’s algorithm[3], the gain I" is chosen
to be [Da ]":U%=2 to render a best convergence rate for the assumed

model.  The resulting yi(¢) for the k -th iteration is shown in Fig.3(b), in
which we observe that nineteen iterative operations are necded to gen-

erate a trajectory within €*-bound of the desired trajectory.

Remark :

We have observed through examples that the 2nd-order learning
algorithm shows a better convergence speed than a 1st-order learning
control of [3]. This may be a generic property of higher-order learning
control algorithms. A formal theory for gencral systems is yet to be
established but for simple cases, one may show efficiency of conver-
gence of a second-order algorithm by arguing as follows :

Let’s consider the following simple linear time-invariant system.
X()=Ax(@)+B u@)

yO=Cx@) (24)

In Arimoto’s method (3], the kth iteration error magnitude and the

(k+1)th iteration error magnitude are related by :

g () Iy < HI=CBT LIl ley( 1, @5

where  ex(t) = ya(t)-ye(t) (26)
from which we may say that the convergence speed of Arimoto’s is

dictated by
121 =11/=CBT| |... @n

In our 2nd-order method, the convergence of the algorithm was
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described by :

1182t (I NP =0 1D |l 18ugl}) 1yt 1P =0 oD 11l 181ty () 1,

where D =CB . (28)
The last cquality D= CB comes from the fact that
y)=Ci(t)=CA x(t)+CB u(t). 29

and the relation (26).
The convergence of this 2nd-order algorithm may well be said to be dic-
tated by the magnitude of the roots of

22 1P-QD 1 ez=11P Q3D 1 1.=0 30)

or

IzI=%[(IIP1—QlDII.,2.+4I|P2~Q2DII.,)"IT;‘;IIPl-QlDII,.} 31

For the fast convergence speed, we must choose the control gain I in
(25) or P,P3.0,1,Q» in (28) such that lz{ is as small as possible
under the condition that D = CB is unknown.

To make a fair comparison, the system parameter D is modelled (or
quessed) 0 be Dy and, assume that the rclation Dy = oD (0>0)
holds between the modelied and real parameters. ( For SISO system, this
last relation is quite natural.)

Then, in Arimoto’s method, we will choose T'=Dj4! to make best con-

vergence, and in this case the value of Iz | becomes

= 1=l
o

In our 2nd-order method, we will choose Q=P 2Dy and Q=P 1D

Izl =1I-DIll,=I l]—DD;q’ll,..,:lll——(lzlli.s

to make best convergence and the value of |2 | becomes

1
Iz L= {(11P (=P \D'D 11 2+41 1P 2P DD | 1) 71 1P =P \Dig'D 1.}
==L Lip ize—2 1P, YEL1Py 11 = Bua 11-L1
—_ET{ lu—ll_—_i_l 201} g I e = D1 x
o

So the proposed method yields the higher convergency speed than that of
Arimoto’s, if we choose the control gains P,P2 such that 0<B;2<1
holds.

Example 3 : The Effect of Disturbance

Under the settings of the control gains being the same as those of
example 1, suppose a sequence of iterative learning operations have
been carricd out 10 be in a satisfactory state when a disturbance of size
1.0 is occurred at the output at t=0.5. As shown in Fig.4(a) and
Fig.4(b), we can observe from the computer simulation that the track-
ing performance was recovered in 4 iterations when the proposed 2nd-
order method was applicd while a similar performance was achieved
after 6 iterations for Arimoto’s method. Obviously, our method is
less sensitive than that of Arimoto’s method in handling disturbances,

showing quicker convergence.

4. Concluding Remarks

A second-order iterative learning control algorithm was proposed



in which more historical data were used to better the output tracking per-
formance. A sufficient condition for the convergency of the proposed
algorithm was given, and via computer simulations, improved perfor-

mance of the proposed algorithm was illustrated.

We remark that the proposed method is a kind of generalization
of the conventional 1st-order method ; for example, Arimoto’s method
corresponds to the case of Pi=I,P,=0,0 =T, Q=0 in the proposed
method.
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Fig 2(a) Output tracking performance for known plant (Example 1)
by the proposed method
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Fig 3(a) Output tracking performance for unknown plant (Example 2)

by the proposed method
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Fig 4(a) Recovery from disturbance (Example 3)
by the proposed method
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Fig 2(b) Output tracking performance for known plant (Example 1)
by Arimoto’s method
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Fig 3(b) Output racking performance for unknown plant (Example 2)
by Arimoto’s method
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Fig 4(b) Recovery from disturbance (Example 3)
by Arimoto’s method



