• Title/Summary/Keyword: Prompt gamma

Search Result 88, Processing Time 0.028 seconds

Identification of Pb-Zn ore under the condition of low count rate detection of slim hole based on PGNAA technology

  • Haolong Huang;Pingkun Cai;Wenbao Jia;Yan Zhang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1708-1717
    • /
    • 2023
  • The grade analysis of lead-zinc ore is the basis for the optimal development and utilization of deposits. In this study, a method combining Prompt Gamma Neutron Activation Analysis (PGNAA) technology and machine learning is proposed for lead-zinc mine borehole logging, which can identify lead-zinc ores of different grades and gangue in the formation, providing real-time grade information qualitatively and semi-quantitatively. Firstly, Monte Carlo simulation is used to obtain a gamma-ray spectrum data set for training and testing machine learning classification algorithms. These spectra are broadened, normalized and separated into inelastic scattering and capture spectra, and then used to fit different classifier models. When the comprehensive grade boundary of high- and low-grade ores is set to 5%, the evaluation metrics calculated by the 5-fold cross-validation show that the SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naive Bayes) and RF (Random Forest) models can effectively distinguish lead-zinc ore from gangue. At the same time, the GNB model has achieved the optimal accuracy of 91.45% when identifying high- and low-grade ores, and the F1 score for both types of ores is greater than 0.9.

Daily adaptive proton therapy: Feasibility study of detection of tumor variations based on tomographic imaging of prompt gamma emission from proton-boron fusion reaction

  • Choi, Min-Geon;Law, Martin;Djeng, Shin-Kien;Kim, Moo-Sub;Shin, Han-Back;Choe, Bo-Young;Yoon, Do-Kun;Suh, Tae Suk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3006-3016
    • /
    • 2022
  • In this study, the images of specific prompt gamma (PG)-rays of 719 keV emitted from proton-boron reactions were analyzed using single-photon emission computed tomography (SPECT). Quantitative evaluation of the images verified the detection of anatomical changes in tumors, one of the important factors in daily adaptive proton therapy (DAPT) and verified the possibility of application of the PG-ray images to DAPT. Six scenarios were considered based on various sizes and locations compared to the reference virtual tumor to observe the anatomical alterations in the virtual tumor. Subsequently, PG-rays SPECT images were acquired using the modified ordered subset expectation-maximization algorithm, and these were evaluated using quantitative analysis methods. The results confirmed that the pixel range and location of the highest value of the normalized pixel in the PG-rays SPECT image profile changed according to the size and location of the virtual tumor. Moreover, the alterations in the virtual tumor size and location in the PG-rays SPECT images were similar to the true size and location alterations set in the phantom. Based on the above results, the tumor anatomical alterations in DAPT could be adequately detected and verified through SPECT imaging using the 719 keV PG-rays acquired during treatment.

Determination of trace boron in steels by prompt gamma-ray activation analysis (즉발감마선방사화분석법에 의한 철강시료 중의 붕소 측정)

  • Kim, I.J.;Cho, K.H.;Paul, R.L.
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.302-306
    • /
    • 2009
  • A trace amount of boron in steel significantly influences its mechanical and physical properties. A prompt gamma ray activation analysis (PGAA) method is used to measure boron in low alloy steel samples of KRISS 101-01-C21~C26. NIST SRMs of 362, 364, 1761 and 1767 serve as the control standards to validate the measurement method. The measured values of the NIST SRMs are consistent with their certified values within the expected uncertainties, except for that of NIST SRM 362. Experimental uncertainties are evaluated according to the guidelines given by the International Organization for Standardization (ISO). The expanded uncertainties are calculated with a coverage factor of 2, at approximately 95% confidence level. The calculated relative expanded uncertainties of boron mass fractions are between 3% and 7% at the mg/kg level. The results are compared with the results measured by the solvent extraction-inductively coupled optical emission spectrometry (ICP/OES) method.

Modeling and Simulation for Transient Pulse Gamma-ray Effects on Semiconductor Devices (반도체 소자의 과도펄스감마선 영향 모델링 및 시뮬레이션)

  • Lee, Nam-Ho;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1611-1614
    • /
    • 2010
  • The explosion of a nuclear weapon radiates a gamma-ray in the form of a transient pulse. If the gamma-ray introduces to semiconductor devices, much Electron-Hole Pairs(EHPs) are generated in depletion region of the devices[7]. as a consequence of that, high photocurrent is created and causes upset, latchup and burnout of semiconductor devices[8]. This phenomenon is known for Transient Radiation Effects on Electronics(TREE), also called dose-rate effects. In this paper 3D structure of inverter and NAND gate device was designed and transient pulse gamma-ray was modeled. So simulation for transient radiation effect on inverter and NAND gate was accomplished and mechanism for upset and latchup was analyzed.

Physical mechanism of gamma-ray bursts: recent breakthroughs

  • Uhm, Z. Lucas;Zhang, Bing;Racusin, Judith
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2018
  • Although it is agreed that the gamma-ray bursts (GRBs) invoke highly relativistic jets with bulk Lorentz factors of a few hundreds, the exact physical mechanism producing such powerful gamma-rays still remains debated. Three outstanding and important questions in the field concern (1) the composition of GRB jets (i.e., matter-dominated vs Poynting-flux-dominated), (2) the involved radiative process responsible for the observed gamma-rays (i.e., synchrotron mechanism vs photospheric radiation), and (3) the distance of the emitting region from the central engine where the prompt gamma-rays are released (i.e., ~10^12 cm vs 10^14 cm vs 10^16 cm). I will present recent important breakthroughs that we have made, which answer these three questions.

  • PDF

Development of hand-held coded-aperture gamma ray imaging system based on GAGG(Ce) scintillator coupled with SiPM array

  • Jeong, Manhee;Hammig, Mark
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2572-2580
    • /
    • 2020
  • Emerging gamma ray detection applications that utilize neutron-based interrogation result in the prompt emission of high-energy (>2 MeV) gamma-rays. Rapid imaging is enabled by scintillators that possess high density, high atomic number, and excellent energy resolution. In this paper, we evaluate the bright (50,000 photons/MeV) oxide scintillator, cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)). A silicon photomultiplier (SiPM) array is coupled to a GAGG(Ce) scintillator array (12 × 12 pixels) and integrated into a coded-aperture based gamma-ray imaging system. A resistor-based symmetric charge division circuit was used reduce the multiplicity of the analog outputs from 144 to 4. The developed system exhibits 9.1%, 8.3%, and 8.0% FWHM energy resolutions at 511 keV, 662 keV, and 1173.2 keV, respectively. In addition, a pixel-identification resolution of 602 ㎛ FWHM was obtained from the GAGG(Ce) scintillator array.

Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: Comparison of SrI2 and GAGG using Monte-Carlo simulation

  • Kim, Minho;Hong, Bong Hwan;Cho, Ilsung;Park, Chawon;Min, Sun-Hong;Hwang, Won Taek;Lee, Wonho;Kim, Kyeong Min
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.626-636
    • /
    • 2021
  • Boron-neutron capture therapy (BNCT) is a cancer treatment method that exploits the high neutron reactivity of boron. Monitoring the prompt gamma rays (PGs) produced during neutron irradiation is essential for ensuring the accuracy and safety of BNCT. We investigate the imaging of PGs produced by the boron-neutron capture reaction through Monte Carlo simulations of a gamma camera with a SrI2 scintillator and parallel-hole collimator. GAGG scintillator is also used for a comparison. The simulations allow the shapes of the energy spectra, which exhibit a peak at 478 keV, to be determined along with the PG images from a boron-water phantom. It is found that increasing the size of the water phantom results in a greater number of image counts and lower contrast. Additionally, a higher septal penetration ratio results in poorer image quality, and a SrI2 scintillator results in higher image contrast. Thus, we can simulate the BNCT process and obtain an energy spectrum with a reasonable shape, as well as suitable PG images. Both GAGG and SrI2 crystals are suitable for PG imaging during BNCT. However, for higher imaging quality, SrI2 and a collimator with a lower septal penetration ratio should be utilized.

Comparison of knife-edge and multi-slit camera for proton beam range verification by Monte Carlo simulation

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Lee, Hyun Su;Kim, Chan Hyeong;Shin, Dong Ho;Jeong, Jong Hwi
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.533-538
    • /
    • 2019
  • The mechanical-collimation imaging is the most mature technology in prompt gamma (PG) imaging which is considered the most promising technology for beam range verification in proton therapy. The purpose of the present study is to compare the performances of two mechanical-collimation PG cameras, knife-edge (KE) camera and multi-slit (MS) camera. For this, the PG cameras were modeled by Geant4 Monte Carlo code, and the performances of the cameras were compared for imaginary point and line sources and for proton beams incident on a cylindrical PMMA phantom. From the simulation results, the KE camera was found to show higher counting efficiency than the MS camera, being able to estimate the beam range even for $10^7$ protons. Our results, however, confirmed that in order to estimate the beam range correctly, the KE camera should be aligned, at least approximately, to the location of the proton beam range. The MS camera was found to show lower efficiency, being able to estimate the beam range correctly only when the number of the protons is at least $10^8$. For enough number of protons, however, the MS camera estimated the beam range correctly, errors being less than 1.2 mm, regardless of the location of the camera.

Estimation of the Characteristics for the Dose Distribution in the Polymer Gel by Means of Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 양성자 조사에 따른 Polymer Gel 내부의 선량 분포 특성 평가)

  • Park, Min-Seok;Kim, Gi-Sub;Jung, Hai-Jo;Park, Se-Young;Choi, In-Seok;Kim, Hyun-Ji;Yoon, Yong-Su;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.36 no.2
    • /
    • pp.165-173
    • /
    • 2013
  • This study was the estimation of the dose distribution for proton, prompt gamma rays and proton induced neutron particles, in case of exposing the proton beam to polymer gel dosimeter and water phantom. The polymer gel dosimeter was compositeness material of Gelatin, Methacrylic acid, Hydroquinone, Tetrakis and Distilled water. The density of gel dosimeter was $1.04g/cm^3$ which was similar to water. The 72, 116 and 140 MeV proton beams were used in the simulation. Proton beam interacted with the nuclei of the phantom and the nuclei in excited states emitted prompt gamma rays and proton induced neutron particles during the process of de-excitation. The proton particles, prompt gamma rays, proton induced neutron particles were detected by polymer gel dosimeter and water phantom, respectively. The gap of the axis for gel was 2 mm. The Bragg-peak for proton particles in gel dosimeter was similar to water phantom. The dose distribution for proton and prompt gamma rays in gel dosimeter and water phantom was approximately identical in case of 72, 116 and 140 MeV for proton beam. However, in case of proton induced neutron particles for 72, 116 and 140 MeV proton beam, particles were not detected in gel dosimeter, while the Water phantom absorbed neutron particles. Considering the resulting data, gel dosimeter which was developed in the normoxic state attentively detected the dose distribution for proton beam exposure except proton induced neutron particles.

Resection and Observation for Brain Metastasis without Prompt Postoperative Radiation Therapy

  • Song, Tae-Wook;Kim, In-Young;Jung, Shin;Jung, Tae-Young;Moon, Kyung-Sub;Jang, Woo-Youl
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.6
    • /
    • pp.667-675
    • /
    • 2017
  • Objective : Total resection without consecutive postoperative whole brain radiation therapy is indicated for patients with a single or two sites of brain metastasis, with close follow-up by serial magnetic resonance imaging (MRI). In this study, we explored the effectiveness, usefulness, and safety of this follow-up regimen. Methods : From January 2006 to December 2015, a total of 109 patients (76 males, 33 females) underwent tumor resection as the first treatment for brain metastases (97 patients with single metastases, 12 with two metastases). The mean age was 59.8 years (range 27-80). The location of the 121 tumors in the 109 patients was supratentorial (n=98) and in the cerebellum (n=23). The origin of the primary cancers was lung (n=45), breast (n=17), gastrointestinal tract (n=18), hepatobiliary system (n=8), kidney (n=7), others (n=11), and unknown origin (n=3). The 121 tumors were totally resected. Follow-up involved regular clinical and MRI assessments. Recurrence-free survival (RFS) and overall survival (OS) after tumor resection were analyzed by Kaplan-Meier methods based on clinical prognostic factors. Results : During the follow-up, MRI scans were done for 85 patients (78%) with 97 tumors. Fifty-six of the 97 tumors showed no recurrence without adjuvant local treatment, representing a numerical tumor recurrence-free rate of 57.7%. Mean and median RFS was 13.6 and 5.3 months, respectively. Kaplan-Meier analysis revealed the cerebellar location of the tumor as the only statistically significant prognostic factor related to RFS (p=0.020). Mean and median OS was 15.2 and 8.1 months, respectively. There were no significant prognostic factors related to OS. The survival rate at one year was 8.2% (9 of 109). Conclusion : With close and regular clinical and image follow-up, initial postoperative observation without prompt postoperative radiation therapy can be applied in patients of brain metastasi(e)s when both the tumor(s) are completely resected.