Browse > Article
http://dx.doi.org/10.1016/j.net.2022.03.006

Daily adaptive proton therapy: Feasibility study of detection of tumor variations based on tomographic imaging of prompt gamma emission from proton-boron fusion reaction  

Choi, Min-Geon (Department of Biomedicine & Health Science and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea)
Law, Martin (Proton Therapy Pte Ltd.)
Djeng, Shin-Kien (Proton Therapy Pte Ltd.)
Kim, Moo-Sub (Department of Biomedicine & Health Science and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea)
Shin, Han-Back (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University)
Choe, Bo-Young (Department of Biomedicine & Health Science and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea)
Yoon, Do-Kun (Department of Biomedicine & Health Science and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea)
Suh, Tae Suk (Department of Biomedicine & Health Science and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea)
Publication Information
Nuclear Engineering and Technology / v.54, no.8, 2022 , pp. 3006-3016 More about this Journal
Abstract
In this study, the images of specific prompt gamma (PG)-rays of 719 keV emitted from proton-boron reactions were analyzed using single-photon emission computed tomography (SPECT). Quantitative evaluation of the images verified the detection of anatomical changes in tumors, one of the important factors in daily adaptive proton therapy (DAPT) and verified the possibility of application of the PG-ray images to DAPT. Six scenarios were considered based on various sizes and locations compared to the reference virtual tumor to observe the anatomical alterations in the virtual tumor. Subsequently, PG-rays SPECT images were acquired using the modified ordered subset expectation-maximization algorithm, and these were evaluated using quantitative analysis methods. The results confirmed that the pixel range and location of the highest value of the normalized pixel in the PG-rays SPECT image profile changed according to the size and location of the virtual tumor. Moreover, the alterations in the virtual tumor size and location in the PG-rays SPECT images were similar to the true size and location alterations set in the phantom. Based on the above results, the tumor anatomical alterations in DAPT could be adequately detected and verified through SPECT imaging using the 719 keV PG-rays acquired during treatment.
Keywords
Proton-boron fusion reaction; Prompt gamma ray; SPECT; Adaptive proton therapy;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H.-B. Shin, M.-S. Kim, S. Kim, K.B. Kim, J.-Y. Jung, D.-K. Yoon, T.S. Suh, Quantitative analysis of prompt gamma ray imaging during proton boron fusion therapy according to boron concentration, Oncotarget 9 (2018) 3089.   DOI
2 M. Suzuki, Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era, Int. J. Clin. Oncol. 25 (2020) 43-50.   DOI
3 S.J. Frank, J.D. Cox, M. Gillin, R. Mohan, A.S. Garden, D.I. Rosenthal, G.B. Gunn, R.S. Weber, M.S. Kies, J.S. Lewin, Multifield optimization intensity modulated proton therapy for head and neck tumors: a translation to practice, Int. J. Radiat. Oncol. Biol. Phys. 89 (2014) 846-853.   DOI
4 T. Tsurubuchi, M. Shirakawa, W. Kurosawa, K. Matsumoto, R. Ubagai, H. Umishio, Y. Suga, J. Yamazaki, A. Arakawa, Y. Maruyama, Evaluation of a novel boron-containing α-d-Mannopyranoside for BNCT, Cells 9 (2020) 1277.   DOI
5 F. Tommasino, M. Rovituso, S. Fabiano, S. Piffer, C. Manea, S. Lorentini, S. Lanzone, Z. Wang, M. Pasini, W. Burger, Proton beam characterization in the experimental room of the Trento Proton Therapy facility, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 869 (2017) 15-20.   DOI
6 H.-B. Shin, M.-S. Kim, M. Law, S.-K. Djeng, M.-G. Choi, B.W. Choi, S. Kang, D.- W. Kim, T.S. Suh, D.-K. Yoon, Application of sigmoidal optimization to reconstruct nuclear medicine image: comparison with filtered back projection and iterative reconstruction method, Nucl. Eng. Technol. 53 (2021) 258-265.   DOI
7 D.M. Minsky, A. Valda, A. Kreiner, S. Green, C. Wojnecki, Z. Ghani, First tomographic image of neutron capture rate in a BNCT facility, Appl. Radiat. Isot. 69 (2011) 1858-1861.   DOI
8 K.K. Brock, Adaptive radiotherapy: moving into the future, in: Book Adaptive Radiotherapy: Moving into the Future, NIH Public Access, 2019, p. 181.
9 H. Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Phys. Med. Biol. 57 (2012) R99.   DOI
10 C.K. Glide-Hurst, P. Lee, A.D. Yock, J.R. Olsen, M. Cao, F. Siddiqui, W. Parker, A. Doemer, Y. Rong, A.U. Kishan, Adaptive radiation therapy (art) strategies and technical considerations: a state of the art review from nrg oncology, Int. J. Radiat. Oncol. Biol. Phys. 109 (2021) 1054-1075.   DOI
11 S. McGowan, N. Burnet, A. Lomax, Treatment planning optimisation in proton therapy, Br. J. Radiol. 86 (2013), 20120288-20120288.   DOI
12 L. Nenoff, M. Matter, A.G. Jarhall, C. Winterhalter, J. Gorgisyan, M. Josipovic, G.F. Persson, P.M. af Rosenschold, D.C. Weber, A.J. Lomax, Daily adaptive proton therapy: is it appropriate to use analytical dose calculations for plan adaption? Int. J. Radiat. Oncol. Biol. Phys. 107 (2020) 747-755.   DOI
13 B. Cai, O.L. Green, R. Kashani, V.L. Rodriguez, S. Mutic, D. Yang, A practical implementation of physics quality assurance for photon adaptive radiotherapy, Z. Med. Phys. 28 (2018) 211-223.   DOI
14 B. Hales, T. Katabuchi, N. Hayashizaki, K. Terada, M. Igashira, T. Kobayashi, Feasibility study of SPECT system for online dosimetry imaging in boron neutron capture therapy, Appl. Radiat. Isot. 88 (2014) 167-170.   DOI
15 S. Geninatti-Crich, A. Deagostino, A. Toppino, D. Alberti, P. Venturello, S. Aime, Boronated compounds for imaging guided BNCT applications, Anti-canc. Agents Med. Chem. (Form. Curr. Med. Chem.-Anti-Cancer Agents 12 (2012) 543-553.   DOI
16 J.-J. Sonke, M. Aznar, C. Rasch, Adaptive radiotherapy for anatomical changes, in: Book Adaptive Radiotherapy for Anatomical Changes, Elsevier, 2019, pp. 245-257.
17 A. Lomax, Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions, Phys. Med. Biol. 53 (2008) 1043.   DOI
18 A. Lomax, Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties, Phys. Med. Biol. 53 (2008) 1027.   DOI
19 P.J. Taddei, D. Mirkovic, J.D. Fontenot, A. Giebeler, Y. Zheng, D. Kornguth, R. Mohan, W.D. Newhauser, Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams, Phys. Med. Biol. 54 (2009) 2259.   DOI
20 A. Thummerer, P. Zaffino, A. Meijers, G.G. Marmitt, J. Seco, R.J. Steenbakkers, J.A. Langendijk, S. Both, M.F. Spadea, A.C. Knopf, Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy, Phys. Med. Biol. 65 (2020), 095002.   DOI
21 D. Yan, F. Vicini, J. Wong, A. Martinez, Adaptive radiation therapy, Phys. Med. Biol. 42 (1997) 123.   DOI
22 A. Winkler, H. Koivunoro, V. Reijonen, I. Auterinen, S. Savolainen, Prompt gamma and neutron detection in BNCT utilizing a CdTe detector, Appl. Radiat. Isot. 106 (2015) 139-144.   DOI
23 D.K. Yoon, J.Y. Jung, K. Jo Hong, K. Sil Lee, T. Suk Suh, GPU-based prompt gamma ray imaging from boron neutron capture therapy, Med. Phys. 42 (2015) 165-169.
24 O.L. Green, L.E. Henke, G.D. Hugo, Practical clinical workflows for online and offline adaptive radiation therapy, in: Book Practical Clinical Workflows for Online and Offline Adaptive Radiation Therapy, Elsevier, 2019, pp. 219-227.
25 D. Yan, D. Lockman, D. Brabbins, L. Tyburski, A. Martinez, An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer, Int. J. Radiat. Oncol. Biol. Phys. 48 (2000) 289-302.
26 F. Foroudi, J. Wong, T. Kron, A. Rolfo, A. Haworth, P. Roxby, J. Thomas, A. Herschtal, D. Pham, S. Williams, Online adaptive radiotherapy for muscle-invasive bladder cancer: results of a pilot study, Int. J. Radiat. Oncol. Biol. Phys. 81 (2011) 765-771.   DOI
27 S. Lim-Reinders, B.M. Keller, S. Al-Ward, A. Sahgal, A. Kim, Online adaptive radiation therapy, Int. J. Radiat. Oncol. Biol. Phys. 99 (2017) 994-1003.   DOI
28 E.B. Villarroel, X. Geets, E. Sterpin, Online adaptive dose restoration in intensity modulated proton therapy of lung cancer to account for interfractional density changes, Phys. Imag. Radiat. Oncol. 15 (2020) 30-37.   DOI
29 D. Yan, J. Liang, Expected treatment dose construction and adaptive inverse planning optimization: implementation for offline head and neck cancer adaptive radiotherapy, Med. Phys. 40 (2013), 021719.   DOI
30 A. Thummerer, B.A. de Jong, P. Zaffino, A. Meijers, G.G. Marmitt, J. Seco, R.J. Steenbakkers, J.A. Langendijk, S. Both, M.F. Spadea, Comparison of the suitability of CBCT-and MR-based synthetic CTs for daily adaptive proton therapy in head and neck patients, Phys. Med. Biol. 65 (2020) 235036.   DOI
31 D.-K. Yoon, N. Naganawa, M. Kimura, M.-G. Choi, M.-S. Kim, Y.-J. Kim, M.W.-M. Law, S.-K. Djeng, H.-B. Shin, B.-Y. Choe, Application of proton boron fusion to proton therapy: experimental verification to detect the alpha particles, Appl. Phys. Lett. 115 (2019) 223701.   DOI
32 G. Petringa, G. Cirrone, C. Caliri, G. Cuttone, L. Giuffrida, G. La Rosa, R. Manna, L. Manti, V. Marchese, C. Marchetta, Prompt gamma-ray emission for future imaging applications in proton-boron fusion therapy, J. Instrum. 12 (2017) C03059.   DOI
33 A. Hoffmann, B. Oborn, M. Moteabbed, S. Yan, T. Bortfeld, A. Knopf, H. Fuchs, D. Georg, J. Seco, M.F. Spadea, MR-guided proton therapy: a review and a preview, Radiat. Oncol. 15 (2020) 1-13.   DOI
34 S. Acharya, C. Wang, S. Quesada, M.A. Gargone, O. Ates, J. Uh, M.J. Krasin, T.E. Merchant, C.-h. Hua, Adaptive proton therapy for pediatric patients: improving the quality of the delivered plan with on-treatment MRI, Int. J. Radiat. Oncol. Biol. Phys. 109 (2021) 242-251.   DOI
35 Y. An, J. Shan, S.H. Patel, W. Wong, S.E. Schild, X. Ding, M. Bues, W. Liu, Robust intensity-modulated proton therapy to reduce high linear energy transfer in organs at risk, Med. Phys. 44 (2017) 6138-6147.   DOI
36 B.C. Das, D.P. Ojha, S. Das, T. Evans, Boron Compounds in Molecular Imaging, Boron-Based Compounds: Potential and Emerging Applications in Medicine, 2018, pp. 205-231.
37 D.-K. Yoon, J.-Y. Jung, T.S. Suh, Application of proton boron fusion reaction to radiation therapy: a Monte Carlo simulation study, Appl. Phys. Lett. 105 (2014) 223507.   DOI
38 G. Cirrone, L. Manti, D. Margarone, G. Petringa, L. Giuffrida, A. Minopoli, A. Picciotto, G. Russo, F. Cammarata, P. Pisciotta, First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness, Sci. Rep. 8 (2018) 1-15.
39 M.-S. Kim, M. Wai-Ming Law, S.-K. Djeng, H.-B. Shin, M.-G. Choi, Y.-J. Kim, B.-Y. Choe, T.S. Suh, D.-K. Yoon, Synergy effect of alpha particles by using natural boron in proton therapy: computational verification, AIP Adv. 9 (2019) 115017.   DOI
40 P. Blaha, C. Feoli, S. Agosteo, M. Calvaruso, F.P. Cammarata, R. Catalano, M. Ciocca, G.A.P. Cirrone, V. Conte, G. Cuttone, The proton-boron reaction increases the radiobiological effectiveness of clinical low-and high-energy proton beams: novel experimental evidence and perspectives, Front. Oncol. 11 (2021).