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a b s t r a c t

The grade analysis of lead-zinc ore is the basis for the optimal development and utilization of deposits. In
this study, a method combining Prompt Gamma Neutron Activation Analysis (PGNAA) technology and
machine learning is proposed for lead-zinc mine borehole logging, which can identify lead-zinc ores of
different grades and gangue in the formation, providing real-time grade information qualitatively and
semi-quantitatively. Firstly, Monte Carlo simulation is used to obtain a gamma-ray spectrum data set for
training and testing machine learning classification algorithms. These spectra are broadened, normalized
and separated into inelastic scattering and capture spectra, and then used to fit different classifier
models. When the comprehensive grade boundary of high- and low-grade ores is set to 5%, the evalu-
ation metrics calculated by the 5-fold cross-validation show that the SVM (Support Vector Machine),
KNN (K-Nearest Neighbor), GNB (Gaussian Naive Bayes) and RF (Random Forest) models can effectively
distinguish lead-zinc ore from gangue. At the same time, the GNB model has achieved the optimal ac-
curacy of 91.45% when identifying high- and low-grade ores, and the F1 score for both types of ores is
greater than 0.9.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lead and zinc metals are widely used in important fields such as
electrical, mechanical, military and nuclear industries [1e5]. With
the continuous development of the global economy, the demand
for lead and zinc metal consumption in various industries is
expanding, which puts forward higher requirements for improving
the survey efficiency, development and utilization of lead-zinc ore
deposits [6]. Huangshaping polymetallic deposit, located in Hunan
Province, China, is a significant lead-zinc mineral resource base.
According to the chemical composition analysis of the ore samples,
the target elements for beneficiation and recovery are Pb and Zn,
which are mainly in the form of galena and sphalerite, respectively;
in addition, there are large amount of sulfide such as pyrite and
pyrrhotite. Based on the features of chemical composition, it can be
seen that the Huangshaping deposit is a lead-zinc primary poly-
metallic sulfide ore.
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Timely information about mineral grade is crucial to deposit
mining (typically on a time scale of minutes, depending on drilling
speed). Due to the complexity of the chemical composition and
distribution of ore in Huangshaping deposit, general borehole
analysis methods will take long drilling sampling and large errors
in subsequent assay results owing to the heterogeneity of the for-
mation of the mineral deposit [7,8]. Prompt Gamma Neutron
Activation Analysis (PGNAA) technology has the characteristics of
online and non-destructive measurement, which has been applied
to real-time elemental analysis of bulk samples like coal, cement,
explosives, etc. [9e12] Mineral grade estimation with PGNAA is a
Logging While Drilling (LWD) method. It collects information of
characteristic gamma-ray emitted during the interaction between
neutrons and nuclei of ore/gangue atoms in formation by way of
inelastic scattering and neutron capture to achieve qualitative and
quantitative analysis of target elements in the mineral deposit.

Since PGNAA can provide real-time composition information of
an order of magnitude large volume of formation rocks in com-
parison with geophysical methods such as sonic logging, electro-
magnetic wave method, etc., it has been applied to grade
estimation of copper and iron ore [13,14]. However, in the grade
open access article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jiawb@nuaa.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.net.2023.01.005&domain=pdf
www.sciencedirect.com/science/journal/17385733
www.elsevier.com/locate/net
https://doi.org/10.1016/j.net.2023.01.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.net.2023.01.005
https://doi.org/10.1016/j.net.2023.01.005


H. Huang, P. Cai, W. Jia et al. Nuclear Engineering and Technology 55 (2023) 1708e1717
control of lead-zinc ore, on account of the comparatively small
radius of borehole, the small-sized detector used will cause a lower
count rate and higher statistical deviation to have a serious impact
on the measurement of element content. At the same time, the
cross-sections of Pb and Zn are low, so it is difficult to analyze their
characteristic peaks according to traditional methods. Direct
quantitative analysis by spectrum processing will cause great un-
certainties with less practical significance. In recent years, the
cross-application of machine learning and spectroscopic analysis
technology has become more and more extensive, which also
proves that machine learning is an effective method for processing
multi-dimensional and low SNR (Signal to Noise Ratio) data
[15e17].

Therefore, this study proposes a mineral grade analysis method
that combines PGNAA technology and machine learning. Consid-
ering the mineral-associated traits of lead-zinc ore in the mineral
deposit, the spectrum of a certain number of ores of different
grades and gangue is obtained through Monte Carlo simulation,
and trained by machine learning classification algorithm to realize
the identification and classification of lead-zinc ores of different
grades and gangue. Qualitative and semi-quantitative real-time
analysis of PGNAA will provide guidance for subsequent drilling
sampling quantitative measurement and reduce time and eco-
nomic costs caused by repeated sampling and multiple assays.
2. Materials and methods

2.1. Monte Carlo simulation of borehole logging

The borehole logging model was constructed using the MCNP-
4C with the general structure is presented in Fig. 1 and can be
briefly described as follow.

$ A borehole filled with fresh water with a radius of 3.5 cm; the
radius and height of formation model are 100 cm and 160 cm
respectively, which is much larger than the size of the borehole
that can be regarded as infinite comparatively; different min-
erals filled the whole formation.

$ The D-T pulsed neutron source emits 14.1 MeV neutron with a
pulse width and period of 50 ms and 2 ms respectively, which
Fig. 1. Schematic diagram of borehole logging MCNP simulation model.
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has the source intensity of 1 � 108 n/s; the radius and height of
neutron tube are 1.9 cm and 22 cm respectively.

$ Gamma-ray counts are recorded by a BGO scintillator detector
with a radius and height of 1.9 cm and 15.24 cm respectively,
and detector-source distance is 35 cm.

$ The shield between the detector and the D-T pulsed neutron
source is tungsten metal, with a radius and height of 2.2 cm and
10 cm respectively; it is set up to reduce the neutrons and
gamma rays from the neutron source to the scintillator directly
[14,18].

$ The BGO scintillator is wrapped in a 3mm thick aluminum shell.
There is a 3mm thick TC11 titanium alloy case outside the entire
detection tube. In addition, at the BGO scintillator and tungsten
metal position on the case, a layer of 2 mm thick fluororubber is
covered, which is designed to reduce the capture gamma rays
generated from the instrument case.

$ The termination condition of theMCNP code is set by the history
cutoff card (NPS ¼ 1Eþ08), i.e., simulation will terminate after
histories of 108 neutrons; according to our settings for the
pulsed neutron source, this corresponds to a measuring time of
40 s for a certain depth logging point.

The energy deposition spectra in this model are calculated by F8
tally and then normalized according to the total count of gamma
photons. At the same time, in order to simulate the fluctuation of
the energy deposition of the physical detector, the method of
Broadening During Simulation (BDS) is adopted [19]. This pro-
cessing is carried out during the operation of the MCNP code, the
deposited energy of the photon recorded by F8 tally will be the
center of a Gaussian distribution, and a randomly sampled energy
from this distribution to replace the original deposited energy will
be recorded. The above process is implemented using the Gaussian
Energy Broadening (GEB) option that comes with the MCNP code.
The desired Full Width at Half Maximum (FWHM) is calculated by
Eq. (1) and constants a, b and c (determined by the performance of
the detector) are inputted by user. The FWHM parameters of the
BGO scintillator used in this study are set a ¼ 0.0218; b ¼ 0.0593;
c ¼ 0.277.

FWHM¼ aþ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E þ cE2

p
(1)

In addition to simulating the energy broadening of the physical
detector, this model also simulates the neutron emission period of
the D-T pulsed neutron source. A distributed density function is
deployed for the TME option of the SDEF card in theMCNP code and
expressed by Eq. (2), then the neutron source will take 2000 ms as a
period and the duration of neutron emission is 50 ms Therefore, the
pure capture spectrum can be obtained by detector within
50e2000 ms, and the pure inelastic scattering spectrum is attained
through deducting a certain proportion of capture spectrum from
the spectrum acquired within 0e50 ms.

DðxÞ¼
�

1;0< x � 50
0;50< x � 2000 (2)
2.2. Samples

The galena (PbS, accounting for about 83.07% of lead output) and
sphalerite (ZnS, accounting for about 91.96% of zinc output) in the
Huangshaping deposit are symbiotic ores, the average grades of
lead and zinc in raw ores are 2.54% and 6.26% respectively. In terms
of mineral-associated relationship, they are mainly embedded with
sulfides such as pyrite (FeS2) and pyrrhotite (FeS); Very few are
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directly distributed in gangue dominated by calcite and quartz
[20,21]. The results of microanalysis show that most of the sphal-
erite contains a high content of iron, which is a typical high-iron
sphalerite type.

The gangue is mainly calcite (CaCO3), followed by quartz (SiO2),
siderite (FeCO3), almandine (Fe3Al2(SiO4)3), etc. Most of the above
together form gangue aggregates. For example, some calcite and
pyrite are symbiotic as carbonate combinations, and very few small
particles of calcite and pyrite are irregularly embedded in the gap of
sulfide.

Based on the above mineral distribution relationship and the
assay results of part of mineral samples, a total of 220 groups of
samples were set up in the simulation, including 110 groups each of
lead-zinc ore and gangue. According to the content of Pb and Zn,
the grade of Pbþ Zn>5% is set to high-grade ore, Pbþ Zn� 5% is set
to low-grade ore, and both the content of Pb and Zn in the gangue
are less than 1%. The elemental composition of gangues and lead-
zinc ores of different grades are listed in Table 1. Usually, ores
with a comprehensive grade of lead and zinc less than 5% account
for about 20e40% of all lead-zinc ore in a mining area, but
considering that the imbalance between the two categories of the
data set will affect the performance of the classification algorithm
[22], the low-grade ore was “oversampled” in the simulations, so
the low-grade ore and high-grade ore each account for 50%, that is,
both ores have 55 sets of samples.

2.3. Machine learning classification algorithm

The spectra collected from Monte Carlo simulation will be used
as a sample data set for training and testing classification algo-
rithms. The identification process of gamma-ray spectrum of min-
eral samples is illustrated in Fig. 2. To start with, two different
classifier models are obtained by fitting the classification algo-
rithms with the training set. After that, the classification of lead-
zinc ore and gangue is performed by classifier model 1 with the
test set, and then classifier model 2 divides the ore samples into
low- and high-grade categories. This study used four different
machine learning classification algorithms [23], including Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), Gaussian Naive
Bayes (GNB) and Random Forest (RF). Their basic principles are
described as follows.

2.3.1. Support Vector Machine
For a given sample data set, each sample has the same number

of features with the associated labels (y2f� 1;1g), where each
feature is a dimension of a hyper-plane. SVM algorithm [24] aims at
finding a hyper-plane (also known as “decision boundary” and can
be defined by Eq. (3)) that divides the hyper-space into two classes
as shown in Fig. 3 (for a binary classification, but it can be extended
to multi-class problem as well) and tries to achieve maximum
separation distance between two classes. This process will result in
two hyper-planes parallel to the decision boundary and located on
either side of it, called margin boundaries and can be given by Eq.
(4). These red dots on the margin boundary in Fig. 3 are the support
vectors.
Table 1
The elemental composition and content of lead-zinc ores of different grades and gangue

Sample Element Content (%)

Pb Zn Fe Si

Low grade ore 1e3.5 1e3.5 15e25 8e16
High grade ore 3e8 3e11 12e25 5e15
Gangue 0.1e1 0.1e1 7e21 4e25
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wTxþ b ¼ 0 (3)

wTxþ b ¼ ±1 (4)

With the input data of xi (gamma spectrumwith several number of
channels), the main goal of training a SVM classification model is to
solve the following optimization problem:

min
w;b;x

1
2
wTwþ C

Xn
i¼1

xi (5)

yi
�
wTfðxiÞþ b

�
�1� xi (6)

xi �0; i ¼ 1;…;n (7)

where xi is the acceptable distance from the correct margin
boundary and C (called Penalty term and greater than zero) con-
trols the strength of the penalty (inversely proportional to the
strength of the penalty). It will allow for some mis-classification
due to fluctuations in gamma spectrum counts. Here training vec-
tors xi are mapped into a higher dimensional space by the kernel
function f as they cannot be classified linearly simply. In this study
the RBF kernel function was used and as presented in Eq. (8).

K
�
xixj
�¼fðxiÞTfðxiÞ¼ exp

�
� g

��xi � xj
��2�;g>0 (8)

After training, for any new set of spectrum data prediction of its
class (þ or -， representing different grades of ore) is possible.

2.3.2. K-nearest neighbor
There is a training sample data set and each sample has a cor-

responding label, the K-Nearest Neighbor algorithm [25] stores
instances of the them and predicts the new unlabeled point as the
class with the most representatives within the k nearest neighbors
of that point. Given a training set fðxi ¼ ðxið1Þ;xið2Þ;…;xiðnÞÞ;yiÞg, the
distance of the new input xj from each sample in the training set
can be determined by Eq. (9) and prediction of its class can be
expressed by Eq. (10).

L2
�
xi; xj

�¼ Xn
l¼1

			xiðlÞ � xj
ðlÞ
			2!1

2

(9)

y¼ argmax
X

xi2NkðxÞ
Ið yi ¼ ciÞ (10)

where NkðxÞ is the k neighbors of the input x, ci refers to the j th
class, and I () is the indicator function which takes value 0 if yisci
and value 1 yi ¼ ci.

Usually, k is an integer that is not greater than 20 and is highly
data-dependent. Its effect on the classification results as shown in
Fig. 4, when k ¼ 5, the unlabeled input is classified as class (þ),
whereas k ¼ 9 it will be classified as class (�). The k value in this
s.

Al Ca S C O

0e4 6e15 10e16 2e6 20e36
0e4 6e15 10e20 2e6 20e34
0e4 7e20 0.5e4 3e10 43e48



Fig. 2. Recognition procedure of machine learning classification algorithm.

Fig. 3. Schematic diagram of SVM algorithm.

Fig. 4. Schematic diagram
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study determined by grid search technique as 3.
2.3.3. Gaussian Naive Bayes
Naive Bayes classifier [26] work based on the Bayesian rule and

probability theorems. For a given input vector ðx1; x2;…; xnÞ with
the class label y, the classifier assume that every pair of features are
conditionally independent with each other. Thus, the probability of
y can be calculated by a contingent probability as specified in Eq.
(11).

Pðyjx1; x2;…; xnÞ¼ Pðx1; x2;…; xnjyÞPðyÞ
Pðx1; x2;…; xnÞ (11)

where (x1; x2;…; xn) denotes the features of the input vector. Ac-
cording to the independence of each feature, we can obtain the
relationship as represented in Eq. (12), and then Eq. (11) will get the
form as expressed in Eq. (13).

Pðxijy; x1; x2;…; xnÞ¼ PðxijyÞ (12)

Pðyjx1; x2;…; xnÞ¼
Qn

i¼1PðxijyÞPðyÞ
Pðx1; x2;…; xnÞ (13)

As for a given instance, Pðx1; x2;…; xnÞ is constant. Therefore, we
can use the classification rule as specified by Eq. (14).
of KNN algorithm.
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Pðyjx1; x2;…; xnÞ∝
Yn

i¼1
PðxijyÞPðyÞ

Z

by¼ argmax
y

Yn

i¼1
PðxijyÞPðyÞ (14)

Gaussian Naive Bayes classification [27] is a case of Naive Bayes
methodwith an assumption of having a Gaussian distribution on all
features given the class label as presented in Eq. (15). This
assumption is suitable for the energy deposition process of gamma
photons.

PðxijyÞ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2ps2y

q exp

 
�
�
xi � my

�2
2s2y

!
(15)
2.3.4. Random Forest
A series of subsets are obtained from the original sample data

set by bootstrap method as input data for different decision trees.
The decision tree model devotes to predicting the value of a target
variable by learning simple decision rules inferred from the data
features. Random Forest [28] is a classical ensemble learning model
that contains multiple decision classification trees as shown in
Fig. 5, and the results are collected by randomly selecting the fea-
tures of each decision tree, and finally a majority voting form is
used for each specific problem to ensure the stability and accuracy
of the prediction results.
Fig. 5. Schematic diagram of RF algorithm.
3. Results and discussion

3.1. Data processing

The gamma-ray spectrum of partial gangue and lead-zinc ores of
different grades obtained by Monte Carlo simulations is presented
in Fig. 6, which records a total of 512 channels of gamma photon
counts in the energy range of 0e10.00 MeV. It can be observed
although there is no obvious elemental characteristic peak, there
are significant differences between ore and gangue in the energy
range of 0.70e0.90 MeV and 2.20e2.40 MeV, and the count con-
tributions of these two intervals are derived from: the inelastic
scattering of Ca (0.77 MeV) and Pb (0.80 MeV), the capture of S
(0.84 MeV) as well as the inelastic scattering of S (2.23 MeV), the
capture of Ca (1.94 MeV) and S (2.38 MeV), respectively. when the
elemental composition of formation materials change, the macro-
scopic thermal neutron absorption cross-section will vary with it,
which will affect the recorded gamma photon yield that is man-
ifested as a certain difference in the total count of the energy range
of 5.60e6.60 MeV, and the count contribution of this part comes
from the capture of Fe (5.92 MeV, 6.02 MeV) and Ca (6.42 MeV), the
inelastic scattering of O (6.13 MeV).

The inelastic scattering and capture spectrum of partial gangue
and lead-zinc ores of different grades as shown in Figs. 7 and 8
respectively. The mostly reactions are inelastic scattering because
it is difficult to set up a neutron moderator around the detection
tube in small-sized borehole, and the neutronmoderation is mainly
through thewater in the borehole and the formationmaterial itself,
which reduces the probability of neutron capture. At the same time,
due to the small-sized detector uesed, the higher the energy, the
worse the statistics of the spectrum, and the fluctuation of the
gamma photon counts is dramatic when the energy is greater than
8.00 MeV, so this part will be eliminated in the subsequent input
1712
data processing for the classification algorithm.
Typically, in common PGNAA online detection of industrial

material, such as cross-band PGNNA analyzers, the expected count
rate is usually between 40 and 80 kcps (using larger size BGO
scintillators and DC mode neutron sources). The count rate of
simulated spectrum in this study is around 7 kcps, which is far from
the normally required for quantitative analysis of spectrum in
PGNAA industrial assays. Therefore, it is important to choose a
suitable classification algorithm to analyze this type of gamma-ray
spectrum.

For the identification of lead-zinc ores and gangues, a complete
512 channels gamma-ray spectrum was selected as the input data
of the classification algorithm, that is, the data set contains 220
vectors of 512 dimensions. For the classification of high- and low-
grade lead-zinc ores, the following four spectrum data were
selected to fit the algorithms and compared the performance of
classifier models.

1. 512 channels of gamma photon energy deposition spectrum in
the energy range of 0e10.00 MeV

2. 395 channels of inelastic scattering spectrum in the energy
range of 0.50e8.00 MeV

3. 395 channels of capture spectrum in the energy range of
0.50e8.00 MeV

4. 790 channels of inelastic scattering spectrum þ capture spec-
trum in the energy range of 0.50e8.00 MeV
3.2. Model evaluation

In order to compare and select the best performance classifi-
cation algorithm, the input data set will be divided into training set
and test set. After each time the classifier model is fitted with the
training set, the performance of the model is tested using the test



Fig. 6. Gamma-ray spectrum of partial lead-zinc ores of different grades and gangue.

Fig. 7. Inelastic scattering spectrum of partial lead-zinc ores of different grades and gangue.
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data set, and the parameters TP, FP, TN and FN are calculated. They
represent the number of true positive, false positive, true negative
and false negative in the test results, respectively, and the following
evaluation metrics are calculated to measure the performance of
the classifier model [29]:

The Accuracy is defined as a ratio between the correct pre-
dictions to the total number of tests and can be calculated by Eq.
(15).

Accuracy¼ TP þ TN
TP þ FN þ TN þ FP

� 100% (15)

The Recall (also known as TPR: true positive rate or sensitivity)
and Specificity (also known as TNR: true negative rate) represent
the proportion of all positive samples and negative samples suc-
cessfully recognized by the classifier model, respectively. When the
1713
number of samples varies greatly between the two categories, the
high Accuracy may be confusing. The Recall and Specificity can
reflect the probability that two types of samples will be successfully
identified as well as are presented using Eqs. (16) and (17),
respectively.

Recall¼ TPR ¼ Sensitivity ¼ TP
TP þ FN

� 100% (16)

Specificity¼ TNR ¼ TN
TN þ FP

� 100% (17)

The positive predictive value (PPV) and negative predictive
value (NPV) represents the proportions of predicted true positives
and predicted true negatives in the predicted positives and nega-
tives, respectively. For the predicted results, these two metrics



Fig. 8. Capture spectrum of partial lead-zinc ores of different grades and gangue.
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characterize the accuracy of the prediction results of positive and
negative samples as well as can be defined in Eqs. (18) and (19),
respectively.

PPV ¼ Precision ¼ TP
TP þ FP

� 100% (18)

NPV ¼ TN
TN þ FN

� 100% (19)

F1 score is the harmonic mean of Precision and Recall, usually
only for positive samples; the recognition effect of low-grade ores is
as vital as high-grade ores in this study, so the F1 score is also
calculated for negative samples (low-grade ores), denoted as F1 (�).
They are specified using Eqs. (20) and (21) respectively.

F1 ¼2� 1
1

Precision þ 1
Recall

¼ 2TP
2TP þ FP þ FN

(20)

F1ð� Þ¼ 2TN
2TN þ FP þ FN

(21)

Matthews Correlation Coefficient (MCC) [30] is mainly used to
measure the binary classification problem as represented in Eq.
(22). It takes into account TP, TN, FP and FN as a relatively equi-
librium indicator, which can also be used in case of unbalanced
samples. The value range of MCC is [�1,1]. The value of 1 indicates
an optimal prediction, 0 represents that the predicted values are
not as good as the results of random prediction, and �1 means that
completely inconsistent with the true values.

MCC¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp (22)

Considering that the sample set of simulated data usually still be
difficult to summarize the real and comprehensive situation of the
mineral deposit, in order to avoid the result deviation caused by
overfitting during training procedure and make full use of the
limited data, the P-repeated K-fold cross-validation method is
adopted to obtain the evaluation metrics of the classifier model
[31]. The process of the 10-repeated 5-fold cross-validation method
using in this study is illustrated in Fig. 9. Taking the identification
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test of high- and low-grade ores as an example, 110 samples are
divided into five subsets after scrambling the data order through
random seeds in each round of validation. Each subset takes turns
as a test set, and the rest is a training set to fit the model, that is, the
training set accounts for four-fifths of a total of 88 samples, and the
test set accounts for one-fifth of a total of 22 samples. a total of
5 � 10 rounds of validation were carried out, and the means of
evaluation metrics in all the validation were calculated.
3.2.1. Identification of PbeZn ore and gangue
In the identification of lead-zinc ore and gangue (The classifier

model 1 as shown in Fig. 2), the positive sample is lead-zinc ore,
and the negative sample is gangue. The Accuracy of different clas-
sifier models were calculated by 5-fold cross-validation and all
were 100%, which indicates that they can successfully distinguish
lead-zinc ore from gangue. Furthermore, the lead and zinc grades of
the gangues were both below 1% in our simulations, which were set
based on actual industrial grades of lead-zinc sulfide ores, so this
model can satisfy the industrial requirements.
3.2.2. Identification of high- and low-grade PbeZn ore
In the identification of high- and low-grade lead-zinc ore (The

classifier model 2 as presented in Fig. 2), the positive sample is
high-grade ore, and the negative sample is low-grade ore. The
evaluation metrics of different classifier models were calculated by
10-repeated 5-fold cross-validation as listed in Tables 2e5 respec-
tively, where the comparison of the two types of F1 and MCC values
is shown in Fig. 10, and the sample data set used were the gamma
photon energy deposition spectrum, inelastic scattering spectrum,
capture spectrum and synthetical spectrum of inelastic
scattering þ capture respectively mentioned in Section 3.1. Except
for the RF model using input data set of inelastic spectra obtained
an Accuracy of only 78.82%, the Accuracy of the other models to
identify high- and low-grade ores were higher than 80%. The
probability of successful identification of low-grade ores was al-
ways higher than that of high-grade ores (Recall＜Specificity),
while the accuracy of the prediction results was the opposite (PPV
＞NPV), indicating that other interfering elements in the formation
(mainly associated metals such as Fe, Al, Ca, etc.) have a more
serious influence on the spectrum of low-grade ores, causing them



Fig. 9. Schematic diagram of 10-repeated 5-fold cross-validation.

Table 2
Comparison of evaluation metrics of different classification algorithms when iden-
tifying high- and low-grade PbeZn ore (gamma photon energy deposition
spectrum).

Classifier Model SVM KNN GNB RF

Accuracy (%) 86.45 82.09 86.55 82.27
Recall (%) 86.88 77.81 82.82 76.73
Specificity (%) 86.51 87.49 89.89 88.05
PPV (%) 86.07 86.10 89.72 86.93
NPV (%) 86.25 79.49 84.38 79.79

Table 3
Comparison of evaluation metrics of different classification algorithms when iden-
tifying high- and low-grade PbeZn ore (inelastic scattering spectrum).

Classifier Model SVM KNN GNB RF

Accuracy (%) 85.27 80.09 88.00 78.82
Recall (%) 81.23 67.32 82.55 71.71
Specificity (%) 89.15 93.80 92.93 85.04
PPV (%) 87.84 91.46 92.03 84.51
NPV (%) 82.84 74.26 85.23 74.75

Table 4
Comparison of evaluation metrics of different classification algorithms when iden-
tifying high- and low-grade lead ore (capture spectrum).

Classifier Model SVM KNN GNB RF

Accuracy (%) 81.27 81.55 91.36 80.00
Recall (%) 77.29 80.27 85.47 70.85
Specificity (%) 85.05 82.84 96.91 88.90
PPV (%) 83.57 83.38 96.47 85.83
NPV (%) 79.46 80.40 87.31 76.14

Table 5
Comparison of evaluation metrics of different classification algorithms when iden-
tifying high- and low-grade PbeZn ore (synthetical spectrum of inelastic
scattering þ capture).

Classifier Model SVM KNN GNB RF

Accuracy (%) 82.82 86.82 91.45 81.27
Recall (%) 82.13 85.06 85.00 72.34
Specificity (%) 83.91 88.11 97.52 89.88
PPV (%) 83.49 87.75 97.13 87.65
NPV (%) 82.13 86.00 87.19 76.95
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to be more easily mis-classified than high-grade one.
Regardless of the data set used, the recognition effect of the GNB

model is better than that of other models. When using synthetical
spectrum of inelastic scattering þ capture as input data, GNB ob-
tained the optimal accuracy: 91.45% and the highest MCC value:
0.8326, meanwhile, Recall and Specificity was 85.00% and 97.52%
respectively, and the F1 score for both types of samples was greater
than 0.9. The above results show that the algorithm can identify
high- and low-grade ores very well, and the accuracy of the iden-
tification results is credible.
4. Conclusion

In this study, a lead-zinc ore identification method combining
PGNAA and machine learning is proposed. In the small-sized
borehole logging of lead-zinc mine model simulated by the MCNP
code, the small size of the detector and the small cross-section of
lead and zinc jointly result in a low count rate of the gamma-ray
spectrum and susceptibility to interference from other elements
in the formation. The machine learning classification algorithm
solves this series of problems well, indicating where the classifi-
cation features of gamma-ray spectra in field logging might be,
which is the core concern of classifiermodel training using gamma-
ray spectra of a real setup.

We used four types of gamma-ray spectrum as input data in turn
and tested four different classification algorithms, the evaluation
metrics obtained from cross-validation show that each classifier
model can completely distinguish lead-zinc ore from gangue, and
the Accuracy of the best effective GBN model (using the synthetical
spectrum of inelastic scattering þ capture as input data) in iden-
tifying high- and low-grade ores has reached 91.45%; meanwhile,
themeasuring time of each depth logging point is 40 s, realizing the
qualitative and semi-quantitative real-time analysis of lead-zinc
ore in small-sized borehole, which will provide reference for dril-
ling sampling and assay as well as improve the exploration effi-
ciency of lead-zinc mineral deposits.

However, this study addresses lead-zinc deposits of the high-
iron sulfide type, where the gangue in the formation is mainly
CaCO3, SiO2 and FeCO3, etc. For other types of mineral deposits such
as lead-zinc oxide ores, or in association with other metallic ores,
the performance of the classifiermodel will vary and depend on the
characteristics of the specific spectrum data. In addition, the
boundaries for high- and low-grade lead-zinc ores in this study
were set based on the geological report of resource exploration in



Fig. 10. Comparison of two types of F1 and MCC values of different classification algorithms when identifying high- and low-grade PbeZn ore.
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the Huangshaping deposit. For mineral deposits of different types
and geologies in other regions, or the actual prospecting needs,
more and different grade boundaries can be set to further test the
recognition effect of the classification algorithm.
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