• Title/Summary/Keyword: Proliferation inhibition

Search Result 1,103, Processing Time 0.027 seconds

Indirubin-3-monoxime Prevents Tumorigenesis in Breast Cancer through Inhibition of JNK1 Activity

  • Kim, Mi-Yeon;Jo, Eun-Hye;Kim, Yong-Chul;Park, Hee-Sae
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.134-141
    • /
    • 2021
  • c-Jun N-terminal kinases (JNKs) have a Janus face, regulating both cell apoptosis and survival. The present study focused on understanding the function of JNK in tumor development and the chemoresistance underlying JNK-mediated cancer cell survival. We identified an inhibitor of JNK1, an important regulator of cancer cell survival. Kinase assay data showed that JNK1-dependent c-Jun phosphorylation was inhibited by indirubin derivatives. In particular, indirubin-3-monoxime (I3M) directly inhibited the phosphorylation of c-Jun in vitro, with a half inhibition dose (IC50) of 10 nM. I3M had a significant inhibitory effect on JNK1 activity. Furthermore, we carried out assays to determine the viability, migration, and proliferation of breast cancer cells. Our results demonstrated that cell growth, scratched wound healing, and colony forming abilities were inhibited by the JNK inhibitor SP600125 and I3M. The combination of SP600125 and I3M significantly decreased cancer cell proliferation, compared with either SP600125 or I3M alone. Our studies may provide further support for JNK1-targeting cancer therapy using the indirubin derivative I3M in breast cancer.

Effects of Pahs and Pcbs and Their Toxic Metabolites on Inhibition of Gjic and Cell Proliferation in Rat Liver Epithelial Wb-F344 Cells

  • Miroslav, Machala;Jan, Vondracek;Katerina, Chramostova;Lenka, Sindlerova;Pavel, Krcmar;Martina, Pliskova;Katerina, Pencikova;Brad, Upham
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.2
    • /
    • pp.56-62
    • /
    • 2003
  • The liver progenitor cells could form a potential target cell population fore both tumor-initiating and -promoting chemicals. Induction of drug-metabolizing and antioxidant enzymes, including AhR-dependent CYP1A1, NQO-1 and AKR1C9, was detected in the rat liver epithelial WB-F344 "stem-like" cells. Additionally, WB-F344 cells express a functional, wild-type form of p53 protein, a biomarker of genotoxic events, and connexin 43, a basic structural unit of gap junctions forming an important type of intercellular communication. In this cellular model, two complementary assays have been established for detection of the modes of action associated with tumor promotion: inhibition of gap junctional intercellular communication (GJIC) and proliferative activity in confluent cells. We found that the PAHs and PCBs, which are AhR agonists, released WB-F344 cells from contact inhibition, increasing both DNA synthesis and cell numbers. Genotoxic effects of some PAHs that lead to apoptosis and cell cycle delay might interfere with the proliferative activity of PAHs. Contrary to that, the nongenotoxic low-molecular-weight PAHs and non-dioxin-like PCB congeners, abundant in the environment, did not significantly affect cell cycle and cell proliferation; however both groups of compounds inhibited GJIC in WB-F344 cells. The release from contact inhibiton by a mechanism that possibly involves the AhR activation, inhibition of GJIC and genotoxic events induced by environmental contaminants are three important modes of action that could play an important role in carcinogenic effects of toxic compounds. The relative potencies to inhibit GJIC, to induce AhR-mediated activity, and to release cells from contact inhibition were determined for a large series of PAHs and PCBs and their metabolites. In vitro bioassays based on detection of events on cellular level (deregulation of GJIC and/or proliferation) or determination of receptor-mediated activities in both ?$stem-like^{\circ}{\times}$ and hepatocyte-like liver cellular models are valuable tools for detection of modes of action of polyaromatic hydrocarbons. They may serve, together with concentration data, as a first step in their risk assessment.

  • PDF

Anti-inflammatory effects of Fangchinoline and Tetrandrine

  • Kim, Hack-Seang;Park, Hong-Serck;Kim, Young-Soo;Oh, Ki-Wan
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.89-89
    • /
    • 1997
  • Fangchinoline and Tetrandrine are the major alkaloids of bis-benzylisoquinoline structure isolated from Stephania tetrandra which has been used as anti-inflammatory drug. The purpose of this study was to investigate the inhibitory effects of Fangchinoline and Tetrandrine on cyclooxygenase, interleukin-5(IL-5) and interleukin-6 (IL-6) as anti-inflammatory mechanisms. Tetrandrine at 100 ${\mu}$M did not show any inhibitory effect but Fangchinoline showed 31% of inhibition on cyclooxygenase. In addition, in mIL-5-dependent Y16 proliferation assay, Tetrandrine at 30 ${\mu}$M exhibited more than 50% of inhibition but Fangchinoline did not any effect. However in hIL-6-dependent MH60 proliferation assay, more than 50% of inhibition was observed by both of Fangchincline and Tetrandrine at 30 ${\mu}$M. Fangchinoline and Tetrandrine also showed anti-inflammatory effects by croton oil induced mouse ear edema test.

  • PDF

Cilostazol Inhibits Vascular Smooth Muscle Cell Proliferation and Reactive Oxygen Species Production through Activation of AMP-activated Protein Kinase Induced by Heme Oxygenase-1

  • Kim, Jung-Eun;Sung, Jin-Young;Woo, Chang-Hoon;Kang, Young-Jin;Lee, Kwang-Youn;Kim, Hee-Sun;Kwun, Woo-Hyung;Choi, Hyoung-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.203-210
    • /
    • 2011
  • Cilostazol is a selective inhibitor of phosphodiesterase 3 that increases intracellular cAMP levels and activates protein kinase A, thereby inhibiting vascular smooth muscle cell (VSMC) proliferation. We investigated whether AMP-activated protein kinase (AMPK) activation induced by heme oxygenase-1 (HO-1) is a mediator of the beneficial effects of cilostazol and whether cilostazol may prevent cell proliferation and reactive oxygen species (ROS) production by activating AMPK in VSMC. In the present study, we investigated VSMC with various concentrations of cilostazol. Treatment with cilostazol increased HO-1 expression and phosphorylation of AMPK in a dose- and time-dependent manner. Cilostazol also significantly decreased platelet-derived growth factor (PDGF)-induced VSMC proliferation and ROS production by activating AMPK induced by HO-1. Pharmacological and genetic inhibition of HO-1 and AMPK blocked the cilostazol-induced inhibition of cell proliferation and ROS production.These data suggest that cilostazol-induced HO-1 expression and AMPK activation might attenuate PDGF-induced VSMC proliferation and ROS production.

Flavonoids: Potential Antiinflammatory Agents

  • Kim, Hyun-Pyo;Son, Kun-Ho;Chang, Hyun-Wook;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • Flavonoids are widely distributed polyphenol compounds in plant kingdom and known to possess varieties of biological/pharmacological activities in vitro and in vivo. A search for antiinflammatory/immunoregulatory flavonoids as potential therapeutic agents has been continued, since serious side effects of currently used nonsteroidal and steroidal antiinflammatory drugs limit their long term uses for the inflammatory disorders. In this reserch, various flavonids were isolated and tested for their in vivo antiinflammatory activity and in vitro inhibitory activity of lymphocyte proliferation. Using a mouse ear edema assay, it was found that certain flavones/flavonols possess mild antiinflammatory activity and a C-2,3-double bond might be essential. Isoflavones were less active. These flavonoids inhibited in vitro lymphocyte proliferation, relatively specific for T-cell proliferation $(IC_{50}=1-10\;{\mu}M)$ and the inhibition was reversible. We have also tested several biflavonoid derivatives, since we recently found that biflavones were phospholipase $A_2$ inhibitors. It was demonstrated that biflavones such as ochnaflavone and ginkgetin inhibited lymphocyte proliferation induced by both concanavaline A and lipopolysaccharide. The inhibition was irreversible in contrast to that of flavones/flavonols. And antiinflammatory activity of biflavonoids are discussed.

  • PDF

Inhibitory Effect of Beet Extract on Cancer Cell Proliferation (비트 추출물의 암세포 증식 저해 효과)

  • Lee, Jae-Hyeok;Park, Jeong-Sook
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.257-262
    • /
    • 2022
  • The purpose of this study was to examine the inhibition of human cancer cell proliferation by using various concentrations of Beet Extract containing various bioactive ingredients. The six cancer cell lines used in the experiment were prostate cancer cells DU-145, lung cancer cells A549, breast cancer cells MCF-7, cervical cancer cells HeLa, liver cancer cells SNU-182, and biliary tract cancer cells SNU-1196. Human-derived cancer cell lines were used. The inhibition of cancer cell proliferation at various concentrations of Beet Extract was measured by the CCK-8 method. As a result of examining the inhibition of cancer cell proliferation, Beet Extract significantly and concentration-dependently inhibited DU145 of prostate cancer cells at all concentrations, and Lung cancer cells A549 and DU-145 of prostate cancer cells at 100ug/mL and 1000ug/mL, cervical cancer cells HeLa, and liver cancer cells SNU- 182, biliary tract cancer cell SNU-1196 showed significant proliferation inhibition at 1000ug/mL. Experiment result, the cancer cell proliferation inhibitory mechanisms of Beet Extract using various human-derived cancer cell lines can be considered to provide cancer prevention effects and the possibility of developing functional foods.

The Inhibition of MicroRNA-139-5p Promoted Osteoporosis of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Wnt/Beta-Catenin Signaling Pathway by NOTCH1

  • Feng, Yimiao;Wan, Pengbo;Yin, Linling;Lou, Xintian
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.448-458
    • /
    • 2020
  • We investigated the therapeutic effects of microRNA-139-5p in relation to osteoporosis of bone marrow-derived mesenchymal stem cell (BMSCs) and its underlying mechanisms. In this study we used a dexamethasone-induced in vivo model of osteoporosis and BMSCs were used for the in vitro model. Real-time quantitative polymerase chain reaction (RT-PCR) and gene chip were used to analyze the expression of microRNA-139-5p. In an osteoporosis rat model, the expression of microRNA-139-5p was increased, compared with normal group. Down-regulation of microRNA-139-5p promotes cell proliferation and osteogenic differentiation in BMSCs. Especially, up-regulation of microRNA-139-5p reduced cell proliferation and osteogenic differentiation in BMSCs. Overexpression of miR-139-5p induced Wnt/β-catenin and down-regulated NOTCH1 signaling in BMSCs. Down-regulation of miR-139-5p suppressed Wnt/β-catenin and induced NOTCH1 signaling in BMSCs. The inhibition of NOTCH1 reduced the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Activation of Wnt/β-catenin also inhibited the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Taken together, our results suggested that the inhibition of microRNA-139-5p promotes osteogenic differentiation of BMSCs via targeting Wnt/β-catenin signaling pathway by NOTCH1.

Inhibition Effects of Lamellarin D on Human Leukemia K562 Cell Proliferation and Underlying Mechanisms

  • Zhang, Nan;Wang, Dong;Zhu, Yu;Wang, Jian;Lin, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9915-9919
    • /
    • 2014
  • Lamellarin D (LamD) is a marine alkaloid with a pronounced cytotoxicity against a large panel of cancer cells, affecting cell growth and inducing apoptosis. However, the molecular mechanisms of action of this compound are poorly understood. In this study, the anticancer efficacy of LamD was investigated in human leukemia K562 cells. The results showed suppressed cell proliferation and induction of G0/G1-phase arrest,while expression of CDK1, and activity of smad3 and smad5 were reduced, but that of p27, p53 and STGC3 was increased. LamD induced cell apoptosis through activation of caspases-8/-3, inhibition of survivin and Bcl-2, suggesting that this compound may also act through a caspase-independent pathway. Moreover, LamD inhibited the secretion of TGF-${\beta}$, IL-$1{\beta}$, IL-6, IL-8 and other inflammatory cytokines and the transcriptional activity of transcription factor NF-${\kappa}B$ in human leukemia K562 cells.Taken together, our results suggest that LamD-mediated inhibition of leukemia cell proliferation may be related to the induction of apoptosis and the regulation of cell cycle, tumor-related gene expression and cytokine expression, which may provide a new way of thinking for the treatment leukemia.

Immunomodulatory Effect of Silybin on T Cell- and Macrophage-mediated Functions (T 세포 및 대식세포 기능에 대한 Silybin의 조절효과)

  • Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.270-276
    • /
    • 2007
  • Silybin is known to be a major active flavonoid component isolated from Silybum marianum, a hepatoprotective medicinal plant. In this study, we examined the immunomodulatory role of silybin on T cell and macrophage-mediated immune responses. To do this, the proliferation of splenic lymphocytes and CD8+ CTLL-2 cells under mitogenic stimulation with lipopolysaccharide (LPS), concanavalin (Con) A and interleukin (IL)-2 and the production of $TNF-{\alpha}$ and NO from LPS- and $IFN-{\gamma}$-activated macrophages was evaluated under silybin treatment. The mitogenic proliferation of splenic lymphocytes induced by LPS and Con A was strongly diminished by silybin in a dose-dependent manner. Moreover, the proliferation of CD8+ CTLL-2 cells was also negatively modulated by the compound. In contrast, silybin did not strongly suppress the proliferation of normal splenocytes and T cell line Sup-T1 cells, indicating that the inhibitory effect of silybin may be due to blocking only mitogenic responses of splenic lymphocytes. In addition, silybin inhibited $TNF-{\alpha}$ production in LPS-stimulated RAW264.7 cells. Effect of silybin however was distinct, according to NO-inducing stimuli. Thus, silybin only blocked NO production induced by $IFN-{\gamma}$ but not LPS and the inhibition was increased when PMA was co-treated with $IFN-{\gamma}$. Unlike NO inhibition, however, this compound protected the cytotoxic damage of RAW264.7 cells induced by both LPS and $IFN-{\gamma}$. Therefore, our data suggest that silybin may participate in host immune responses mediated by T cells and macrophages via regulating mitogenic proliferation, and the production of $TNF-{\alpha}$ and NO, depending on cellular stimuli.

Angiotensin II Promotes Smooth Muscle Cell Proliferation and Migration through Release of Heparin-binding Epidermal Growth Factor and Activation of EGF-Receptor Pathway

  • Yang, Xiaoping;Zhu, Mei J.;Sreejayan, N.;Ren, J.;Du, Min
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.263-270
    • /
    • 2005
  • Transactivation of EGF-receptor (EGFR) by G-protein coupled receptors (GPCRs) is emerging as an important pathway in cell proliferation, which plays a crucial role in the development of atherosclerotic lesion. Angiotensin II (Ang II) has been identified to have a major role in the formation of atherosclerotic lesions, although the underlying mechanisms remain largely unclear. We hypothesize that Ang II promotes the proliferation and migration of smooth muscle cells through the release of heparin-binding epidermal growth factor like growth factor (HB-EGF), transactivation of EGFR and activation of Akt and Erk 1/2, with matrix metalloproteases (MMPs) playing a dispensable role. Primary rat aortic smooth muscle cells were used in this study. Smooth muscle cells rendered quiescent by serum deprivation for 12 h were treated with Ang II (100 nM) in the presence of either GM6001 ($20{\mu}M$), a specific inhibitor of MMPs or AG1478 ($10{\mu}M$), an inhibitor of EGFR. The levels of phosphorylation of EGFR, Akt and Erk 1/2 were assessed in the cell lysates. Inhibition of MMPs by GM6001 significantly attenuated Ang II-stimulated phosphorylation of EGFR, suggesting that MMPs may be involved in the transactivation of EGFR by Ang II receptor. Furthermore Ang II-stimulated proliferation and migration of smooth muscle cells were significantly blunted by inhibiting MMPs and EGFR and applying HB-EGF neutralization antibody, indicating that MMPs, HB-EGF and EGFR activation is necessary for Ang-II stimulated migration and proliferation of smooth muscle cells. Our results suggest that inhibition of MMPs may represent one of the strategies to counter the mitogenic and motogenic effects of Ang II on smooth muscle cells and thereby prevent the formation and development of atherosclerotic lesions.