Browse > Article

Angiotensin II Promotes Smooth Muscle Cell Proliferation and Migration through Release of Heparin-binding Epidermal Growth Factor and Activation of EGF-Receptor Pathway  

Yang, Xiaoping (Center for Cardiovascular Research and Alternative Medicine, University of Wyoming)
Zhu, Mei J. (Department of Animal Science, University of Wyoming)
Sreejayan, N. (Center for Cardiovascular Research and Alternative Medicine, University of Wyoming)
Ren, J. (Center for Cardiovascular Research and Alternative Medicine, University of Wyoming)
Du, Min (Center for Cardiovascular Research and Alternative Medicine, University of Wyoming)
Abstract
Transactivation of EGF-receptor (EGFR) by G-protein coupled receptors (GPCRs) is emerging as an important pathway in cell proliferation, which plays a crucial role in the development of atherosclerotic lesion. Angiotensin II (Ang II) has been identified to have a major role in the formation of atherosclerotic lesions, although the underlying mechanisms remain largely unclear. We hypothesize that Ang II promotes the proliferation and migration of smooth muscle cells through the release of heparin-binding epidermal growth factor like growth factor (HB-EGF), transactivation of EGFR and activation of Akt and Erk 1/2, with matrix metalloproteases (MMPs) playing a dispensable role. Primary rat aortic smooth muscle cells were used in this study. Smooth muscle cells rendered quiescent by serum deprivation for 12 h were treated with Ang II (100 nM) in the presence of either GM6001 ($20{\mu}M$), a specific inhibitor of MMPs or AG1478 ($10{\mu}M$), an inhibitor of EGFR. The levels of phosphorylation of EGFR, Akt and Erk 1/2 were assessed in the cell lysates. Inhibition of MMPs by GM6001 significantly attenuated Ang II-stimulated phosphorylation of EGFR, suggesting that MMPs may be involved in the transactivation of EGFR by Ang II receptor. Furthermore Ang II-stimulated proliferation and migration of smooth muscle cells were significantly blunted by inhibiting MMPs and EGFR and applying HB-EGF neutralization antibody, indicating that MMPs, HB-EGF and EGFR activation is necessary for Ang-II stimulated migration and proliferation of smooth muscle cells. Our results suggest that inhibition of MMPs may represent one of the strategies to counter the mitogenic and motogenic effects of Ang II on smooth muscle cells and thereby prevent the formation and development of atherosclerotic lesions.
Keywords
Angiotensin II; EGF Receptor; HB-EGF; Migration; MMPs; Proliferation; Smooth Muscle Cell;
Citations & Related Records

Times Cited By Web Of Science : 24  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Asakura, M., Kitakaze, M., Takashima, S., Liao, Y., Ishikura, F., et al. (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat. Med. 8, 35-40   DOI   ScienceOn
2 Fischer, O. M., Hart, S., Gschwind, A., and Ullrich, A. (2003) EGFR signal transactivation in cancer cells. Biochem. Soc. Trans. 31, 1203-1208   DOI
3 Kim, S. and Iwao, H. (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol. Rev. 52, 11-34
4 Marx, J. (2003). Heart disease. How to subdue a swelling heart. Science 300, 1492-1496   DOI   ScienceOn
5 Montiel, M., de la Blanca, E. P., and Jimenez, E. (2005) Angiotensin II induces focal adhesion kinase/paxillin phosphorylation and cell migration in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 327, 971-978   DOI   ScienceOn
6 Moriguchi, Y., Matsubara, H., Mori, Y., Murasawa, S., Masaki, H., et al. (1999) Angiotensin II-induced transactivation of epidermal growth factor receptor regulates fibronectin and transforming growth factor-beta synthesis via transcriptional and posttranscriptional mechanisms. Circ. Res. 84, 1073-1084   DOI   ScienceOn
7 Shah, B. H. and Catt, K. J. (2003) A central role of EGF receptor transactivation in angiotensin II -induced cardiac hypertrophy. Trends Pharmacol. Sci. 24, 239-244   DOI   ScienceOn
8 Shah, B. H. and Catt, K. J. (2004) Matrix metalloproteinasedependent EGF receptor activation in hypertension and left ventricular hypertrophy. Trends Endocrinol. Metab. 15, 241-243   DOI   ScienceOn
9 Song, K., Shiota, N., Takai, S., Takashima, H., Iwasaki, H., et al. (1998) Induction of angiotensin converting enzyme and angiotensin II receptors in the atherosclerotic aorta of highcholesterol fed Cynomolgus monkeys. Atherosclerosis 138, 171-182   DOI   ScienceOn
10 Sreejayan, N., Lin, Y., and Hassid, A. (2002) NO attenuates insulin signaling and motility in aortic smooth muscle cells via protein tyrosine phosphatase 1B-mediated mechanism. Arterioscler. Thromb. Vasc. Biol. 22, 1086-1092   DOI   ScienceOn
11 Yang, B. C., Phillips, M. I., Mohuczy, D., Meng, H., Shen, L., et al. (1998) Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscler. Thromb. Vasc. Biol. 18, 1433-1439   DOI   ScienceOn
12 Zhao, Y., Liu, J., Li, L., Liu, L., and Wu, L. (2005) Role of Ras/PKCzeta/MEK/ERK1/2 signaling pathway in angiotensin II-induced vascular smooth muscle cell proliferation. Regul. Pept. 128, 43-50   DOI   ScienceOn
13 Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., et al. (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884-888   DOI   ScienceOn
14 Andresen, B. T., Linnoila, J. J., Jackson, E. K., and Romero, G. G. (2003) Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells. Hypertension 41, 781-786   DOI   ScienceOn
15 Pierce, K. L., Tohgo, A., Ahn, S., Field, M. E., Luttrell, L. M., et al. (2001) Epidermal growth factor (EGF) receptor-dependent ERK activation by G protein-coupled receptors: a co-culture system for identifying intermediates upstream and downstream of heparin-binding EGF shedding. J. Biol. Chem. 276, 23155-23160   DOI   ScienceOn
16 Ross, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801-809   DOI   ScienceOn
17 Rossi, F., Ferraresi, A., Romagni, P., Silvestroni, L., and Santiemma, V. (2002) Angiotensin II stimulates contraction and growth of testicular peritubular myoid cells in vitro. Endocrinology 143, 3096-3104   DOI   ScienceOn
18 Schafer, B., Gschwind, A., and Ullrich, A. (2004) Multiple Gprotein- coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 23, 991-999   DOI   ScienceOn
19 Adachi, T., Cui, C. H., Kanda, A., Kayaba, H., Ohta, K., et al. (2004) Activation of epidermal growth factor receptor via CCR3 in bronchial epithelial cells. Biochem. Biophys. Res. Commun. 320, 292-296   DOI   ScienceOn
20 Leskinen, M. J., Kovanen, P. T., and Lindstedt, K. A. (2003) Regulation of smooth muscle cell growth, function and death in vitro by activated mast cells--a potential mechanism for the weakening and rupture of atherosclerotic plaques. Biochem. Pharmacol. 66, 1493-1498   DOI   ScienceOn
21 Yigzaw, Y., Poppleton, H. M., Sreejayan, N., Hassid, A., and Patel, T. B. (2003) Protein-tyrosine phosphatase-1B (PTP1B) mediates the anti-migratory actions of Sprouty. J. Biol. Chem. 278, 284-288   DOI   ScienceOn
22 Du, M., Zhu, M. J., Means, W. J., Hess, B. W., and Ford, S. P. (2004). Effect of nutrient restriction on calpain and calpastatin content of skeletal muscle from cows and fetuses. J. Anim. Sci. 82, 2541-2547
23 Kuhlmann, C. R., Schafer, M., Li, F., Sawamura, T., Tillmanns, H., et al. (2003) Modulation of endothelial Ca(2+)-activated K(+) channels by oxidized LDL and its contribution to endothelial proliferation. Cardiovasc. Res. 60, 626-634   DOI   ScienceOn
24 Lupia, E., Pucci, A., Peasso, P., Merlo, M., Baron, P., et al. (2003) Intra-plaque production of platelet-activating factor correlates with neoangiogenesis in human carotid atherosclerotic lesions. Int. J. Mol. Med. 12, 327-334
25 Bokemeyer, D., Schmitz, U., and Kramer, H. J. (2000) Angiotensin II-induced growth of vascular smooth muscle cells requires an Src-dependent activation of the epidermal growth factor receptor. Kidney Int. 58, 549-558
26 Cussac, D., Schaak, S., Denis, C., and Paris, H. (2002) alpha 2B-adrenergic receptor activates MAPK via a pathway involving arachidonic acid metabolism, matrix metalloproteinases, and epidermal growth factor receptor transactivation. J. Biol. Chem. 277, 19882-19888   DOI   ScienceOn
27 Saito, S., Frank, G. D., Motley, E. D., Dempsey, P. J., Utsunomiya, H., et al. (2002) Metalloprotease inhibitor blocks angiotensin II-induced migration through inhibition of epidermal growth factor receptor transactivation. Biochem. Biophys. Res. Commun. 294, 1023-1029   DOI   ScienceOn
28 Hama, K., Ohnishi, H., Yasuda, H., Ueda, N., Mashima, H., et al. (2004) Angiotensin II stimulates DNA synthesis of rat pancreatic stellate cells by activating ERK through EGF receptor transactivation. Biochem. Biophys. Res. Commun. 315, 905-911   DOI   ScienceOn
29 Braunwald, E. (1997) Shattuck lecture--cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. New. Engl. J. Med. 337, 1360-1369   DOI   ScienceOn
30 Arrieta, O., Guevara, P., Escobar, E., Garcia-Navarrete, R., Pineda, B., et al. (2005) Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br. J. Cancer 92, 1247-1252   DOI   ScienceOn
31 Liu, J., Liao, Z., Camden, J., Griffin, K. D., Garrad, R. C., et al. (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J. Biol. Chem. 279, 8212-8218   DOI   ScienceOn
32 Ruiz-Ortega, M., Ruperez, M., Esteban, V., and Egido, J. (2003) Molecular mechanisms of angiotensin II-induced vascular injury. Curr. Hypertens. Rep. 5, 73-79   DOI   ScienceOn
33 Fujiyama, S., Matsubara, H., Nozawa, Y., Maruyama, K., Mori, Y., et al. (2001) Angiotensin AT(1) and AT(2) receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation. Circ. Res. 88, 2-29   DOI
34 Hao, L., Du, M., Lopez-Campistrous, A., and Fernandez-Patron, C. (2004) Agonist-induced activation of matrix metalloproteinase- 7 promotes vasoconstriction through the epidermal growth factor-receptor pathway. Circ. Res. 94, 68-76   DOI   ScienceOn
35 Tamarat, R., Silvestre, J. S., Durie, M., and Levy, B. I. (2002) Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways. Lab. Invest. 82, 747-756
36 Winter, P. M., Morawski, A. M., Caruthers, S. D., Fuhrhop, R. W., Zhang, H., et al. (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3- integrin-targeted nanoparticles. Circulation 108, 2270-2274   DOI   ScienceOn
37 Kalmes, A., Vesti, B. R., Daum, G., Abraham, J. A., and Clowes, A. W. (2000) Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal growth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor. Circ. Res. 87, 92-98   DOI   ScienceOn
38 Marra, D. E., Simoncini, T., and Liao, J. K. (2000) Inhibition of vascular smooth muscle cell proliferation by sodium salicylate mediated by upregulation of p21(Waf1) and p27(Kip1). Circulation 102, 2124-2130   DOI   ScienceOn
39 Eguchi, S., Frank, G. D., Mifune, M., and Inagami, T. (2003) Metalloprotease-dependent ErbB ligand shedding in mediating EGFR transactivation and vascular remodelling. Biochem. Soc. Trans. 31, 1198-1202   DOI
40 Sah, J. F., Balasubramanian, S., Eckert, R. L., and Rorke, E. A. (2004) Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases. J. Biol. Chem. 279, 12755-12762   DOI   ScienceOn
41 Touyz, R. M., Cruzado, M., Tabet, F., Yao, G., Salomon, S., et al. (2003) Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can. J. Physiol. Pharmacol. 81, 159-167   DOI   ScienceOn
42 Brown, C., Pan, X., and Hassid, A. (1999) Nitric oxide and Ctype atrial natriuretic peptide stimulate primary aortic smooth muscle cell migration via a cGMP-dependent mechanism: relationship to microfilament dissociation and altered cell morphology. Circ. Res. 84, 655-667   DOI   ScienceOn