Browse > Article
http://dx.doi.org/10.15616/BSL.2021.27.3.134

Indirubin-3-monoxime Prevents Tumorigenesis in Breast Cancer through Inhibition of JNK1 Activity  

Kim, Mi-Yeon (School of Biological Sciences and Technology, Chonnam National University)
Jo, Eun-Hye (School of Biological Sciences and Technology, Chonnam National University)
Kim, Yong-Chul (School of Life Sciences, Gwangju Institute of Science & Technology)
Park, Hee-Sae (School of Biological Sciences and Technology, Chonnam National University)
Abstract
c-Jun N-terminal kinases (JNKs) have a Janus face, regulating both cell apoptosis and survival. The present study focused on understanding the function of JNK in tumor development and the chemoresistance underlying JNK-mediated cancer cell survival. We identified an inhibitor of JNK1, an important regulator of cancer cell survival. Kinase assay data showed that JNK1-dependent c-Jun phosphorylation was inhibited by indirubin derivatives. In particular, indirubin-3-monoxime (I3M) directly inhibited the phosphorylation of c-Jun in vitro, with a half inhibition dose (IC50) of 10 nM. I3M had a significant inhibitory effect on JNK1 activity. Furthermore, we carried out assays to determine the viability, migration, and proliferation of breast cancer cells. Our results demonstrated that cell growth, scratched wound healing, and colony forming abilities were inhibited by the JNK inhibitor SP600125 and I3M. The combination of SP600125 and I3M significantly decreased cancer cell proliferation, compared with either SP600125 or I3M alone. Our studies may provide further support for JNK1-targeting cancer therapy using the indirubin derivative I3M in breast cancer.
Keywords
Cancer proliferation; Indirubin-3-monoxime; c-Jun N-terminal kinase; Phosphorylation inhibition; Triple negative breast cancer; Tumorigenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang X, Chao L, Li X, Ma G, Chen L, Zang Y, Zhou G. Elevated expression of phosphorylated c-jun nh2-terminal kinase in basal-like and "triple-negative" breast cancers. Hum Pathol. 2010. 41: 401-406.   DOI
2 Wood RA, Barbour MJ, Gould GW, Cunningham MR, Plevin RJ. Conflicting evidence for the role of jnk as a target in breast cancer cell proliferation: Comparisons between pharmacological inhibition and selective shrna knockdown approaches. Pharmacol Res Perspect. 2018. 6.
3 Zeke A, Misheva M, Remenyi A, Bogoyevitch MA. Jnk signaling: Regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev. 2016. 80: 793-835.   DOI
4 Zhao HF, Wang J, Tony To SS. The phosphatidylinositol 3-kinase/akt and c-jun n-terminal kinase signaling in cancer: Alliance or contradiction? (review). Int J Oncol. 2015. 47: 429-436.   DOI
5 Zhen Y, Sorensen V, Jin Y, Suo Z, Wiedlocha A. Indirubin-3'-monoxime inhibits autophosphorylation of fgfr1 and stimulates erk1/2 activity via p38 mapk. Oncogene. 2007. 26: 6372-6385.   DOI
6 Marko D, Schatzle S, Friedel A, Genzlinger A, Zankl H, Meijer L, Eisenbrand G. Inhibition of cyclin-dependent kinase 1 (cdk1) by indirubin derivatives in human tumour cells. Br J Cancer. 2001. 84: 283-289.   DOI
7 Bain J, McLauchlan H, Elliott M, Cohen P. The specificities of protein kinase inhibitors: An update. Biochem J. 2003. 371: 199-204.   DOI
8 Guan QH, Pei DS, Zhang QG, Hao ZB, Xu TL, Zhang GY. The neuroprotective action of SP600125, a new inhibitor of jnk, on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal ca1 via nuclear and non-nuclear pathways. Brain Res. 2005. 1035: 51-59.   DOI
9 Bogoyevitch MA, Kobe B. Uses for jnk: The many and varied substrates of the c-jun n-terminal kinases. Microbiol Mol Biol Rev. 2006. 70: 1061-1095.   DOI
10 Cargnello M, Roux PP. Activation and function of the mapks and their substrates, the mapk-activated protein kinases. Microbiol Mol Biol Rev. 2011. 75: 50-83.   DOI
11 Hammouda MB, Ford AE, Liu Y, Zhang JY. The jnk signaling pathway in inflammatory skin disorders and cancer. Cells. 2020. 9.
12 Hoessel R, Leclerc S, Endicott JA, Nobel ME, Lawrie A, Tunnah P, Leost M, Damiens E, Marie D, Marko D, Niederberger E, Tang W, Eisenbrand G, Meijer L. Indirubin, the active constituent of a chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol. 1999. 1: 60-67.   DOI
13 Hui L, Pei DS, Zhang QG, Guan QH, Zhang GY. The neuroprotection of insulin on ischemic brain injury in rat hippocampus through negative regulation of jnk signaling pathway by pi3k/akt activation. Brain Res. 2005. 1052: 1-9.   DOI
14 Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, Muehlbeyer S, Hippe F, Vatter S, Merz KH, Eisenbrand G, Jove R. Indirubin derivatives inhibit stat3 signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci U S A. 2005. 102: 5998-6003.   DOI
15 Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L. Indirubins inhibit glycogen synthase kinase-3 beta and cdk5/p25, two protein kinases involved in abnormal tau phosphorylation in alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem. 2001. 276: 251-260.   DOI
16 Lo WY, Chang NW. An indirubin derivative, indirubin-3'-monoxime suppresses oral cancer tumorigenesis through the down-regulation of survivin. PLoS One. 2013. 8: e70198.   DOI
17 Xie Y, Liu Y, Ma C, Yuan Z, Wang W, Zhu Z, Gao G, Liu X, Yuan H, Chen R, Huang S, Wang X, Zhu X, Wang X, Mao Z, Li M. Indirubin-3'-oxime inhibits c-jun nh2-terminal kinase: Anti-apoptotic effect in cerebellar granule neurons. Neurosci Lett. 2004. 367: 355-359.   DOI
18 Lee MJ, Kim MY, Mo JS, Ann EJ, Seo MS, Hong JA, Kim YC, Park HS. Indirubin-3'-monoxime, a derivative of a chinese anti-leukemia medicine, inhibits notch1 signaling. Cancer Lett. 2008. 265: 215-225.   DOI
19 Liao XM, Leung KN. Indirubin-3'-oxime induces mitochondrial dysfunction and triggers growth inhibition and cell cycle arrest in human neuroblastoma cells. Oncol Rep. 2013. 29: 371-379.   DOI
20 Lin A, Dibling B. The true face of jnk activation in apoptosis. Aging Cell. 2002. 1: 112-116.   DOI
21 Mehan S, Meena H, Sharma D, Sankhla R. Jnk: A stress-activated protein kinase therapeutic strategies and involvement in alzheimer's and various neurodegenerative abnormalities. J Mol Neurosci. 2011. 43: 376-390.   DOI
22 Moon MJ, Lee SK, Lee JW, Song WK, Kim SW, Kim JI, Cho C, Choi SJ, Kim YC. Synthesis and structure-activity relationships of novel indirubin derivatives as potent anti-proliferative agents with cdk2 inhibitory activities. Bioorg Med Chem. 2006. 14: 237-246.   DOI
23 Kukekov NV, Xu Z, Greene LA. Direct interaction of the molecular scaffolds posh and jip is required for apoptotic activation of jnks. J Biol Chem. 2006. 281: 15517-15524.   DOI
24 Verrecchia F, Tacheau C, Wagner EF, Mauviel A. A central role for the jnk pathway in mediating the antagonistic activity of pro-inflammatory cytokines against transforming growth factor-beta-driven smad3/4-specific gene expression. J Biol Chem. 2003. 278: 1585-1593.   DOI
25 Bode AM, Dong Z. The functional contrariety of jnk. Mol Carcinog. 2007. 46: 591-598.   DOI
26 Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004. 10: 5367-5374.   DOI
27 Park JG, Aziz N, Cho JY. Mkk7, the essential regulator of jnk signaling involved in cancer cell survival: A newly emerging anticancer therapeutic target. Ther Adv Med Oncol. 2019. 11: 1758835919875574.
28 Schwaiberger AV, Heiss EH, Cabaravdic M, Oberan T, Zaujec J, Schachner D, Uhrin P, Atanasov AG, Breuss JM, Binder BR, Dirsch VM. Indirubin-3'-monoxime blocks vascular smooth muscle cell proliferation by inhibition of signal transducer and activator of transcription 3 signaling and reduces neointima formation in vivo. Arterioscler Thromb Vasc Biol. 2010. 30: 2475-2481.   DOI
29 Seki E, Brenner DA, Karin M. A liver full of jnk: Signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology. 2012. 143: 307-320.   DOI
30 Xiao Z, Hao Y, Liu B, Qian L. Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in china. Leuk Lymphoma. 2002. 43: 1763-1768.   DOI
31 Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011. 121: 2750-2767.   DOI
32 Insua-Rodriguez J, Pein M, Hongu T, Meier J, Descot A, Lowy CM, De Braekeleer E, Sinn HP, Spaich S, Sutterlin M, Schneeweiss A, Oskarsson T. Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. EMBO Mol Med. 2018. 10.