• 제목/요약/키워드: Projective modules

검색결과 74건 처리시간 0.019초

LOCAL SPLITTING PROPERTIES OF ENDOMORPHISM RINGS OF PROJECTIVE MODULES

  • Lee, Sang Cheol
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.747-755
    • /
    • 2013
  • This paper deals with the unit groups of the endomorphism rings of projective modules over polynomial rings and further over formal power series rings. A normal subgroup of the unit group is defined and discussed. The local splitting properties of element of endomorphism rings of projective modules over polynomial rings are given.

A HOMOLOGICAL CHARACTERIZATION OF KRULL DOMAINS

  • Wang, Fang Gui;Zhou, De Chuan
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.649-657
    • /
    • 2018
  • Let R be a commutative ring. In this paper, the w-projective Basis Lemma for w-projective modules is given. Then it is shown that for a domain, nonzero w-projective ideals and nonzero w-invertible ideals coincide. As an application, it is proved that R is a Krull domain if and only if every submodule of finitely generated projective modules is w-projective.

A Characterization of Nonnil-Projective Modules

  • Hwankoo Kim;Najib Mahdou;El Houssaine Oubouhou
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.1-14
    • /
    • 2024
  • Recently, Zhao, Wang, and Pu introduced and studied new concepts of nonnil-commutative diagrams and nonnil-projective modules. They proved that an R-module that is nonnil-isomorphic to a projective module is nonnil-projective, and they proposed the following problem: Is every nonnil-projective module nonnil-isomorphic to some projective module? In this paper, we delve into some new properties of nonnil-commutative diagrams and answer this problem in the affirmative.

THE CLASS OF WEAK w-PROJECTIVE MODULES IS A PRECOVER

  • Kim, Hwankoo;Qiao, Lei;Wang, Fanggui
    • 대한수학회보
    • /
    • 제59권1호
    • /
    • pp.141-154
    • /
    • 2022
  • Let R be a commutative ring with identity. Denote by w𝒫w the class of weak w-projective R-modules and by w𝒫w the right orthogonal complement of w𝒫w. It is shown that (w𝒫w, w𝒫w) is a hereditary and complete cotorsion theory, and so every R-module has a special weak w-projective precover. We also give some necessary and sufficient conditions for weak w-projective modules to be w-projective. Finally it is shown that when we discuss the existence of a weak w-projective cover of a module, it is enough to consider the w-envelope of the module.

FINITELY GENERATED PROJECTIVE MODULES OVER NOETHERIAN RINGS

  • LEE, SANG CHEOL;KIM, SUNAH
    • 호남수학학술지
    • /
    • 제28권4호
    • /
    • pp.499-511
    • /
    • 2006
  • It is well-known that every finitely generated torsion-free module over a principal ideal domain is free. This will be generalized. We deal with ideals of the finite, external direct product of certain rings. Finally, if M is a torsion-free, finitely generated module over a reduced, Noetherian ring A, then we prove that Ms is a projective module over As, where $S=A{\setminus}(A)$.

  • PDF

COPURE PROJECTIVE MODULES OVER FGV-DOMAINS AND GORENSTEIN PRÜFER DOMAINS

  • Shiqi Xing
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.971-983
    • /
    • 2023
  • In this paper, we prove that a domain R is an FGV-domain if every finitely generated torsion-free R-module is strongly copure projective, and a coherent domain is an FGV-domain if and only if every finitely generated torsion-free R-module is strongly copure projective. To do this, we characterize G-Prüfer domains by G-flat modules, and we prove that a domain is G-Prüfer if and only if every submodule of a projective module is G-flat. Also, we study the D + M construction of G-Prüfer domains. It is seen that there exists a non-integrally closed G-Prüfer domain that is neither Noetherian nor divisorial.

ON 𝜙-EXACT SEQUENCES AND 𝜙-PROJECTIVE MODULES

  • Zhao, Wei
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1513-1528
    • /
    • 2021
  • Let R be a commutative ring with prime nilradical Nil(R) and M an R-module. Define the map 𝜙 : R → RNil(R) by ${\phi}(r)=\frac{r}{1}$ for r ∈ R and 𝜓 : M → MNil(R) by ${\psi}(x)=\frac{x}{1}$ for x ∈ M. Then 𝜓(M) is a 𝜙(R)-module. An R-module P is said to be 𝜙-projective if 𝜓(P) is projective as a 𝜙(R)-module. In this paper, 𝜙-exact sequences and 𝜙-projective R-modules are introduced and the rings over which all R-modules are 𝜙-projective are investigated.

Direct Sums of Strongly Lifting Modules

  • Atani, Shahabaddin Ebrahimi;Khoramdel, Mehdi;Pishhesari, Saboura Dolati
    • Kyungpook Mathematical Journal
    • /
    • 제60권4호
    • /
    • pp.673-682
    • /
    • 2020
  • For the recently defined notion of strongly lifting modules, it has been shown that a direct sum is not, in general, strongly lifting. In this paper we investigate the question: When are the direct sums of strongly lifting modules, also strongly lifting? We introduce the notion of a relatively strongly projective module and use it to show if M = M1 ⊕ M2 is amply supplemented, then M is strongly lifting if and only if M1 and M2 are relatively strongly projective and strongly lifting. Also, we consider when an arbitrary direct sum of hollow (resp. local) modules is strongly lifting.

DIRECT PROJECTIVE MODULES WITH THE SUMMAND SUM PROPERTY

  • Han, Chang-Woo;Choi, Su-Jeong
    • 대한수학회논문집
    • /
    • 제12권4호
    • /
    • pp.865-868
    • /
    • 1997
  • Let R be a ring with a unity and let M be a unitary left R-module. In this paper, we establish [5, Proposition 2.8] by showing the proof of it. Moreover, from the above result, we obtain some properties of direct projective modules which have the summand sum property.

  • PDF