• Title/Summary/Keyword: Project Schedule Management

Search Result 495, Processing Time 0.03 seconds

PRODUCTIVITY PREDICTION MODEL BASED ON PRODUCTIVION INFLUENCING FACTORS: FOCUSED ON FORMWORK OF RESIDENTIAL BUILDING

  • Byungki Kwon;Hyun-soo Lee;Moonseo Park;Hyunsoo Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.58-65
    • /
    • 2011
  • Construction Productivity is one of the most important elements in construction management. It is used in construction process scheduling and cost management, which are significant sector in construction management. It is important to make appropriate schedule and monitor how works are done within schedule. But construction project contains uncertainty and inexactitude, modifying construction schedule is being an issue to manage construction works well. Even though prediction and monitoring of productivity can be principal activity, it is hard to predict productivity with manager's experience and a standard of estimate. A large number of factors influencing productivity, such as drawing, construction method, weather, labor, material, equipment, etc. But current calculation of productivity depends on empirical probability, not consider difference of each influencing factor. In this research, the aim is to present a productivity predicting regression model of form work, which includes effectiveness of influences factors. 5 variables existed inside form work are selected by interview and site research based on literature review of existed various productivity influencing factors. The effectiveness and correlation of productivity influencing factors are analyzed by statistical approach, and it is used to make productivity regression model. The finding of this research will improves monitoring and controlling of project schedule in construction phase.

  • PDF

Development of Construction Project Control System for Large Sized Construction by Process and Data Modeling (대형건설공사의 프로세스 및 데이터 모델링을 통한 건설프로젝트관리체계 구축에 관한 연구)

  • Choi Yoon-Ki;Lee Hyun-Soo;Hwang Young-Sam;Kim Young-Suk;Kim Woo-Young;Song Young-Woong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.153-161
    • /
    • 2004
  • The systematic material and labor management planning should be established on accomplished EVM data. The matrix method of integrated cost and schedule was used with common category concept according to the construction project control system. The construction project control system was suggested through analyzing process and data modeling based on integrated cost, schedule and material. Information of construction project can be developed the relationship between the field data and the integrated cost, schedule database. Process and data modelling is provide a standard data format which are related to the material, labor management based on integrated cost, schedule database.

Influence Factors of Aerial Environment on Project Schedule Management

  • Hong, Jun-pyo;Lim, Hyoung-chul
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.608-611
    • /
    • 2015
  • The objectives of this research are 1) control of schedule or improvement of management for aerial environment, 2) distribution of responsibility to the parties concerned (factory, material company, construction company, design and engineering, occupancy). The results show the relative priority of the four major items in wall-based apartment buildings and in column-based apartment buildings. An analysis of the parties responsible for improvement based on the IAQ results shows more efforts to improve IAQ are needed in material factories and engineering/design companies.

  • PDF

Web-based Three-step Project Management Model and Its Software Development

  • Hwang Heung-Suk;Cho Gyu-Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.373-378
    • /
    • 2006
  • Recently the technical advances and complexities have generated much of the difficulties in managing the project resources, for both scheduling and costing to accomplish the project in the most efficient manner. The project manager is frequently required to render judgments concerning the schedule and resource adjustments. This research develops an analytical model for a schedule-cost and risk analysis based on visual PERT/CPM. We used a three-step approach: 1) in the first step, a deterministic PERT/CPM model for the critical path and estimating the project time schedule and related resource planning and we developed a heuristic model for crash and stretch out analysis based upon a time-cost trade-off associated with the crash and stretch out of the project. 2) In second step, we developed web-based risk evaluation model for project analysis. Major technologies used for this step are AHP (analytic hierarchy process, fuzzy-AHP, multi-attribute analysis, stochastic network simulation, and web based decision support system. Also we have developed computer programs and have shown the results of sample runs for an R&D project risk analysis. 3) We developed an optimization model for project resource allocation. We used AHP weighted values and optimization methods. Computer implementation for this model is provided based on GUI-Type objective-oriented programming for the users and provided displays of all the inputs and outputs in the form of GUI-Type. The results of this research will provide the project managers with efficient management tools.

  • PDF

Time Shortening of Structural Framework of High-rise Apartment Housing for the Urgent Project Area: Focused on the Cases of Insufficient Time or Delayed Projects

  • Bang, Jong-Dae;Lee, Do-Heun;Chun, Young-Soo;Park, Ji-Young;Lee, Bum-Sik;Jun, Myoung-Hoon
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.355-365
    • /
    • 2011
  • Construction duration is very important as a factor which comprises three axises of construction management with quality and cost in construction project. In general project condition, construction duration is optimized while minimizing construction cost and securing required quality. However, in case of insufficient project time duration or delayed projects, project progress management is different from those of normal projects. These project areas need solutions to complete work within a given completion day. To time shortening the current duration of each typical floor of structural framework in apartment construction is investigated, and a basic time schedule planning for typical floor of structural framework in normal projects is planned. This study proposed 3 ways for time shortening of urgent project or insufficient construction duration project. Also, This study proposed detailed time shortening method and technical solution conditions while time is shortened.

IMPROVING THE USABILITY OF STOCHASTIC SIMULATION BASED SCHEDULING SYSTEM

  • Tae-Hyun Bae;Ryul-Hee Kim;Kyu-Yeol Song;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.393-399
    • /
    • 2009
  • This paper introduces an automated tool named Advanced Stochastic Schedule Simulation System (AS4). The system automatically integrates CPM schedule data exported from Primavera Project Planner (P3) and historical activity duration data obtained from a project data warehouse, computes the best fit probability distribution functions (PDFs) of historical activity durations, assigns the PDFs identified to respective activities, computes the optimum number of simulation runs, simulates the schedule network for the optimum number of simulation runs, and estimates the best fit PDF of project completion times (PCTs). AS4 improves the reliability of simulation-based scheduling by effectively dealing with the uncertainties of the activities' durations, increases the usability of the schedule data obtained from commercial CPM software, and effectively handles the variability of the PCTs by finding the best fit PDF of PCTs. It is designed as an easy-to-use computer tool programmed in MATLAB. AS4 encourages the use of simulation-based scheduling because it is simple to use, it simplifies the tedious and burdensome process involved in finding the PDFs of the many activities' durations and in assigning the PDFs to the many activities of a new network under modeling, and it does away with the normality assumptions used by most simulation-based scheduling systems in modeling PCTs.

  • PDF

Development of Telepresence System for Schedule Management in Railway Construction Project (철도시설공사의 현장 공정관리를 위한 원격 영상 운영체계 개발)

  • Kang, Leen-Seok;Kim, Hyeon-Seung;Park, Jin-Jung;Moon, Hyoun-Seok;Shin, Min-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2010
  • In the construction phase, the existing schedule management system by 4D CAD has been difficult to check for a status and progress of construction product in real-time because it simulates only VR (virtual reality) object based on a planned schedule. This study suggests a construction schedule management system by telepresence technique that can visualize progress status in real-time by using 4D CAD system based on remote monitoring. The telepresence methodology and system were developed in the study and they were verified for a railway construction project. The developed system can examine the status and progress of construction because it can compare 4D simulation based on planned schedule with real-time site images through web-camera.

What Factors Make the Delay of the Information System Project Implementation? (무엇이 정보시스템 프로젝트 일정을 지연시키는가?)

  • Seoung, Byung Ook;Park, Sang Cheol;Koh, Joon
    • Knowledge Management Research
    • /
    • v.22 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • Large-scaled hospital information system projects are often delayed than originally planned. Regarding project management, it is necessary to examine main factors triggering the schedule delay and to analyze the causality of such delay. This study tries to find the delay factors and causal relationship between them based on the case of the hospital information system development project by using the grounded theory method. It turned out that 'unrealistic scheduling' affects overall schedule delays like domino phenomenon, and 'poor analysis of existing systems' leads to poor quality of work analysis while 'poor subsystem integrated interface' triggers poor design quality. This study found out the factors affecting the delay of a project, analyzing cause-and-effect relationships between them in the academic side. From the practical view, it shows a solution to minimize delays in the project schedule for each of SI companies, hospitals and project managers.

Feasibility Study on the Duration of Shiwha Techno-Valley through Simulation (시뮬레이션을 이용한 시화 테크노 벨리 공기 적정성 검토연구)

  • Kim Kyong-Ju;Kim Byeong-Soo;Chun Jin-Ku;Lee Jeong-Hun;Yun Won-Gun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.495-499
    • /
    • 2003
  • As an alternative to overcome the limitations of current popular schedule system such as Bar Chart, PERT, CPM in proving the feasibility of a given project schedule and duration, this research applies simulation to the 'Shiwha Techno-Valley project, and then reviews its usability in time management. Shiwha-Techno-Valley is a gigantic project requiring large number of equipment and resulting in traffic congestion. In particular, project site is located near the Shiwha industrial complex and Daeboo-Do tourist place. Therefore, current traffic needs should not be ignored. This research evaluates whether the project can be finished in a given time even if construction equipment increase in addition to the current traffic. Through the analysis of the simulation output, the research identifies the optimal resource input and the needs on alternative schedule for the project.

  • PDF

Construction Cost-Schedule Integration Management Methodolgy by using Progress Integration Unit (성과측정유닛을 활용한 건설 비용 - 일정 통합관리 방안)

  • Kang, Namhee;Choi, Jaehyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 2017
  • Measuring and evaluating project progress and performance are the key element of the construction project success. Construction progress is typically measured quantitatively by evaluating cost and time allocated to the project deliverable, and thus properly integrating cost and time is essential to the project management. This research was performed to propose an alternative methodology to integrate the cost and time and provide a framework for the progress measurement. The researchers developed a typical work process for the cost and schedule planning and also developed an alternative cost-schedule integration method by using progress integration units (PIU). A discipline of a construction phase served as a common level for WBS and CBS integration, so the PIUs'were defined under discipline. A case study project was selected to validate the developed methodology. The result showed the proposed method improved efficiency of cost and time integration. The result also showed the excluding material for the progress measurement purpose significantly reduced the bias of progress measurement.