• Title/Summary/Keyword: Progeny strains

Search Result 27, Processing Time 0.028 seconds

Fruiting Body Formation of Cordyceps militaris from Multi-Ascospore Isolates and Their Single Ascospore Progeny Strains

  • Shrestha, Bhushan;Han, Sang-Kuk;Sung, Jae-Mo;Sung, Gi-Ho
    • Mycobiology
    • /
    • v.40 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • Interest in commercial cultivation and product development of Cordyceps species has shown a recent increase. Due to its biochemical and pharmacological effects, Cordyceps militaris, commonly known as orange caterpillar fungus, is being investigated with great interest. Cultivation of C. militaris has been practiced on a large scale in order to fulfill a demand for scientific investigation and product development. Isolates of C. militaris can be easily established from both spores and tissue. For isolation of spores, ascospores released from mature stromata are trapped in sterile medium. Multi-ascospore isolates, as well as combinations of single ascospore strains, are used for production of fruiting bodies. Progeny ascospore strains can be isolated from artificial fruiting bodies, thus, the cycle of fruiting body production can be continued for a long period of time. In this study, we examined fruiting body production from multi-ascospore isolates and their progeny strains for three generations. $F_1$ progeny strains generally produced a larger number of fruiting bodies, compared with their mother multi-ascospore isolates; however, $F_2$ and $F_3$ progeny strains produced fewer fruiting bodies. Optimum preservation conditions could help to increase the vitality of the progeny strains. In order to retain the fruiting ability of the strains, further testing of various methods of preservation and different methods for isolation should be performed.

Genetic and Biochemical Characterization of Monokaryotic Progeny Strains of Button Mushroom (Agaricus bisporus)

  • Kwon, Hyuk Woo;Choi, Min Ah;Yun, Yeo Hong;Oh, Youn-Lee;Kong, Won-Sik;Kim, Seong Hwan
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.81-86
    • /
    • 2015
  • To promote the selection of promising monokaryotic strains of button mushroom (Agaricus bisporus) during breeding, 61 progeny strains derived from basidiospores of two different lines of dikaryotic parental strains, ASI1038 and ASI1346, were analyzed by nucleotide sequencing of the intergenic spacer I (IGS I) region in their rDNA and by extracellular enzyme assays. Nineteen different sizes of IGS I, which ranged from 1,301 to 1,348 bp, were present among twenty ASI1346-derived progeny strains, while 15 different sizes of IGS I, which ranged from 700 to 1,347 bp, were present among twenty ASI1038-derived progeny strains. Phylogenetic analysis of the IGS sequences revealed that different clades were present in both the ASI10388- and ASI1346-derived progeny strains. Plating assays of seven kinds of extracellular enzymes (${\beta}$-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease) also revealed apparent variation in the ability to produce extracellular enzymes among the 40 tested progeny strains from both parental A. bisporus strains. Overall, this study demonstrates that characterization of IGS I regions and extracellular enzymes is useful for the assessment of the substrate-degrading ability and heterogenicity of A. bisporus monokaryotic strains.

Genomic Variation and Toxin Specificity of Ustilago maydis Viruses from Progeny Strains as a Result of Artificial Mating (Ustilago maydis의 Mating 과정에 따른 Virus 유전자의 변이에 관한 연구)

  • 강인식;이세원
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.105-110
    • /
    • 1997
  • Ustilago maydis strains (A-series and SH-series) containg virus or viral dsRNAs were artificially mated in corn seedling to generate 6 progeny strains, designated A23, A45, A21l, A31O, SH24 and SH61O. The dsRNA patterns of progeny strains were identical to those of the parental strains and there was no molecular exclusion mechanism among dsRNAs of parental strains. Virus particles were purified from 6 progeny strains and viral dsRNAs were analyzed on 5% PAGE. There was no mixed encapsidation between virus or dsRNAs of parental strains. Progeny strain SH6l4 produced toxin which inhibits the growth of SH9, SHIO and SH11. Likewise, toxins from A310 and SH24 inhibited growth of the SH11 strains. These results indicate that the presence of different types of dsRNA does not interfere the expression of toxin gene.

  • PDF

Study of Viral Effects of the Mycovirus (LeV) and Virus-Free Commercial Line in the Edible Mushroom Lentinula edodes

  • Kim, Jung-Mi;Song, Ha-Yeon;Yun, Suk-Hyun;Lee, Hyun-Suk;Ko, Han-Kyu;Kim, Dae-Hyuk
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.37-37
    • /
    • 2015
  • dsRNA was found in malformed cultures of Lentinula edodes strain FMRI0339, one of the three most popular sawdust cultivated commercial strains of shiitake, and was also found in healthy-looking fruiting bodies and actively growing mycelia. Cloning of the partial genome of the dsRNA revealed the presence of the RdRp sequence of a novel L. edodes mycovirus (LeV), and sequence comparison of the cloned amplicon showed an identical sequence to known RdRp genes of LeV found in strain HKA. The meiotic stability of dsRNA was examined by measuring the ratio of the presence of dsRNA among sexual monokaryotic progeny. More than 40% of the monokaryotic progeny still contained the dsRNA, indicating the persistence of dsRNA during sexual reproduction. Comparing the mycelia growth of monokaryotic progeny suggested that, although variations in the growth rate existed among progeny and virus infection was observed in highly actively growing progeny, there appeared to be a tendency toward a lower frequency of virus incidence in actively growing progeny. This study attempted to cure the edible mushroom L. edodes strain FMRI0339 of the L. edodes mycovirus (LeV) in order to obtain an isogenic virus-free fungal strain as well as a virus-infected strain for comparison. Mycelial fragmentation, followed by being spread on a plate with serial dilutions resulted in a virus-free colony. Viral absence was confirmed with gel electrophoresis after dsRNA-specific virus purification, Northern blot analysis, and PCR using reverse transcriptase (RT-PCR). Once cured, all of fungal cultures remained virus-free over the next two years. Interestingly, the viral titer of LeV varied depending on the culture condition. The titer from the plate culture showed at least a 20-fold higher concentration than that grown in the liquid culture. However, the reduced virus titer in the liquid culture was recovered by transferring the mycelia to a plate containing the same medium. In addition, oxygen-depleted culture conditions resulted in a significant decrease of viral concentration, but not to the extent seen in the submerged liquid culture. Although no $discernable phenotypic changes in colony morphology were observed, virus-cured strains showed significantly higher growth rates and mycelial mass than virus-infected strains. We were also explored effects of LeV on fruiting body formation and mushroom yield. The fruiting body formation yield of virus-free L. edodes was larger than virus-infected L. edodes. These results indicate that LeV infection has a deleterious effect on mycelial growth and fruiting body formation. In addition, we have been investigated host-parasite interaction between L. edodes and its mycovirus interaction to study viral mechanism by establishment of proteomics.

  • PDF

Occurrence of dsRNA Mycovirus (LeV-FMRI0339) in the Edible Mushroom Lentinula edodes and Meiotic Stability of LeV-FMRI0339 among Monokaryotic Progeny

  • Kim, Jung-Mi;Yun, Suk-Hyun;Park, Seung-Moon;Ko, Han-Gyu;Kim, Dae-Hyuk
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.460-464
    • /
    • 2013
  • dsRNA was found in malformed cultures of Lentinula edodes strain FMRI0339, one of the three most popular sawdust cultivated commercial strains of shiitake, and was also found in healthy-looking fruiting bodies and actively growing mycelia. Cloning of the partial genome of the dsRNA revealed the presence of the RdRp sequence of a novel L. edodes mycovirus (LeV), and sequence comparison of the cloned amplicon showed identical sequences sequence to known RNA-dependent RNA polymerase genes of LeV found in strain HKA. The meiotic stability of dsRNA was examined by measuring the ratio of the presence of dsRNA among sexual monokaryotic progeny. More than 40% of the monokaryotic progeny still contained the dsRNA, indicating the persistence of dsRNA during sexual reproduction. Comparing the mycelia growth of monokaryotic progeny suggested that there appeared to be a tendency toward a lower frequency of virus incidence in actively growing progeny.

Genetic Clarification of Auricularia heimuer Strains Bred and Cultivated in Korea Using the ITS and IGS1 rDNA Region Sequences

  • Nitesh Pant;HyeongJin Noh;Won-Ho Lee;Seong Hwan Kim
    • Mycobiology
    • /
    • v.51 no.2
    • /
    • pp.109-113
    • /
    • 2023
  • Auricularia is one of the broadly cultivated edible mushrooms in Korea. Most of the Korean Auricularia strains used for cultivation and breeding are known as A. auricula-judae. Recently, this species has been reported to belong to a species complex. Therefore, this study was carried out to genetically clarify the bred and cultivated Korean A. auricula-judae strains. The internal transcribed spacer (ITS) and IGS1 rDNA region sequences were determined from 10 A. auricula-judae strains by PCR and sequencing. Variation in the nucleotide sequence and sequence length of the two rDNA regions were found among the seven A. auricula-judae strains. A maximum-likelihood (ML) phylogenetic tree based on the ITS sequences clearly placed all the 10 Korean A. auricula-judae strains in the A. heimuer clade of the A. auriculajudae complex. A. heimuer is diverged from A. auricula-judae. An ML phylogenetic tree based on the IGS1 sequences revealed the close relationship between Korean A. heimuer strains to Chinese A. heimuer strains. But each strain could be distinguishable by the IGS1 sequence. Furthermore, progeny strains in the seven Korean strains could be differentiated from their parental strains by the IGS1 sequence based phylogenetic tree. Our results are expected to be used to complement the distinction of domestic Auricularia cultivars.

Oospore Production in Broth Media and Oospore Germination of Phytophthora capsici (고추 역병균(Phytophthora capsici)의 액체배지에서 난포자 형성과 발아)

  • Kim, Byung-Sup;Rin, Ernest James;Coffey, Michael D.
    • The Korean Journal of Mycology
    • /
    • v.37 no.1
    • /
    • pp.114-116
    • /
    • 2009
  • In this study, we selected suitable broth media for mass production of Phytophthora capsici oospore, investigated oospore germination and secured $F_1$ progeny. Carrot broth and V8C broth were determined most effective for oospore formation by calculating and comparing oospore concentration produced from 8 different liquid media. Eleven strains were selected from P. capsici (CapA)/P. tropicalis (CapB) and 9 crosses were formed. Oospore progeny were produced, isolated and germinated from A1 and A2 combinations of P. capsici (CapA) with P tropicalis (CapB). This resulted in a total number of 129 $F_1$ isolates of P. capsici/P. tropicalis with a 0.64-4.0% (mean 1.85%) oospore germination.

Characteristics of Hypovirulent Strains of Chestnut Blight Fungus, Cryphonectria parasitica, Isolated in Korea

  • Lee, Sang-Hyun;Moon, Byung-Ju;Lee, Jong-Kyu
    • Mycobiology
    • /
    • v.34 no.2
    • /
    • pp.61-66
    • /
    • 2006
  • Chestnut blight disease caused by Cryphonectria parasitica is widely distributed throughout chestnut tree plantations in Korea. We surveyed 65 sites located at 9 provinces in South Korea, and isolated 248 virulent and 3 hypovirulent strains of chestnut blight fungus. Hypovirulent strains had dsRNA virus in the cytoplasm, which is one of the typical characteristics of hypovirulent strains. In addition, they showed more characteristics of hypovirulent strains, i.e., suppressed conidiation, reduced pigmentation in colony color, and reduced phenol oxidase activity as well as reduced pathogenicity. Hypovirulent strains, KCPH-22, KCPH-135 and KCPH-136, had a genomic dsRNA band with the molecular weight of 12.7 kb, which is the L-dsRNA of CHV1. They also had a 2.7 kb defective dsRNA band. Single conidia isolated from hypovirulent strains were cultured and various phenotypes and absence of dsRNA bands were obtained from single conidial cultures, which means that hypovirulence transmission is unstable in asexual reproduction and variations in viral heredity by asexual reproduction. Biocontrol trial using hypovirulent strains was also carried out in the chestnut tree plantations, and canker expansion in the treated trees was stopped and healed by callus formation at the margin of the canker. These results show the potentials in successful biocontrol of chestnut blight if the vegetatively compatible hypovirulent strains could be directly used around the canker formed by compatible virulent strains.

Glucose Transport through N-Acetylgalactosamine Phosphotransferase System in Escherichia coli C Strain

  • Kim, Hyun Ju;Jeong, Haeyoung;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1047-1053
    • /
    • 2022
  • When ptsG, a glucose-specific phosphotransferase system (PTS) component, is deleted in Escherichia coli, growth can be severely poor because of the lack of efficient glucose transport. We discovered a new PTS transport system that could transport glucose through the growth-coupled experimental evolution of ptsG-deficient E. coli C strain under anaerobic conditions. Genome sequencing revealed mutations in agaR, which encodes a repressor of N-acetylgalactosamine (Aga) PTS expression in evolved progeny strains. RT-qPCR analysis showed that the expression of Aga PTS gene increased because of the loss-of-function of agaR. We confirmed the efficient Aga PTS-mediated glucose uptake by genetic complementation and anaerobic fermentation. We discussed the discovery of new glucose transporter in terms of different genetic backgrounds of E. coli strains, and the relationship between the pattern of mixed-acids fermentation and glucose transport rate.

Stable Transformation via Callus Formation and Rhizogenesis from the Cultures of Hypocotyl Explant of Chinese Cabbage (배추의 배축절편으로부터 캘러스와 뿌리 발생을 통한 안정적 형질전환)

  • Cho, Mi-Ae;Kim, Choon-Ae;Min, Sung-Ran;Ko, Suck-Min;Liu, Jang-Ryol;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.139-144
    • /
    • 2007
  • Hypocotyl explants of Chinese cabbage (cvs. "Jeong Sang") produced transgenic calli on callus induction medium (MS salt, B5 vitamin, 5 mg/L acetosyringone, 1 mg/L 2,4-D, 3% sucrose, 400 mg/L cefotaxime, 100 mg/L paromomycin, pH 5.8) after cocultivation with strains of Agrobacterium tumefaciens (EHA101, LBA4404, GV3101) harboring the pPTN290 containing paromomycin-resistance gene as a selectable marker, and then they transferred to root induction medium (1/2MS salt, MS vitamins, 2% sucrose, 100 mg/L paromomycin, 100 mg/L cefotaxime, pH 5.8) and shoot induction medium (MS salt, B5 vitamin, 4 mg/L $AgNO_3$, 4 mg/L 6-benzyladenine, 3 mg/L alpha-naphthaleneacetic acid, 100 mg/L paromomycin, 100 mg/L cefotaxime, 3% sucrose, pH 5.8) in order. There was a significant difference in the frequency of transgenic calli depending on Agrobacterium strains. In particular, the highest frequency (6.1%) of transgenic calli was obtained from the hypocotyls cocultivated with EHA101 strains. Also, the frequency (%) of transgenic root and plants from each transgenic callus clone were obtained with 60.7% and 38.2% in EHA101, with 8.3% and 0% in LBA4404, with 20.5% and 85.7% in GV3101 strains, respectively. They were grown to maturity in a greenhouse and normally produced $T_2$ seeds. GUS histochemical assay for progeny ($T_2$) revealed that the transgenes was expressed in the plant genome, and progeny analysis from 7 independent transgenic events demonstrated that the transformants transmitted the transgene as a single or multiple functional locus.