• Title/Summary/Keyword: Profile Error

Search Result 515, Processing Time 0.026 seconds

Characteristics of Uni-directional Diverter for Gravimetric Calibration Facility (액체용 중량식 유량계 교정장치의 일방향 Diverter 특성연구)

  • Nam, Ki Han;Park, Jong Ho;Kim, Hong Jip
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Diverter is an essential element in gravimetric calibration method of flowmeter. Error of diverter are influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. That's why, time detection position of diverter is tuned through repetitive test for minimizing error of diverter. Further the diverter must be compared with the other institutions test since the influence on the accuracy of the flow meter used in the test. In this paper, errors (flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location) of diverter are decreased by produced uni-direction diverter and error of gravimetric calibration system is decreased. Uni-direction diverter is calibrated by gravimetric calibration system with precision flowmeter, the flowmeter is calibrated by pipe prover and other institutions and uni-direction diverter is evaluated. Uni-direction diverter is not influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. As a result, Uni-direction diverter can calibrate in wider scope since increasing ratio of maximum and minimum flow rate of uni-direction diverter.

Transmission Error Analysis of ZI and ZA Profile Worm Gears (ZI 및 ZA형 웜기어의 치합전달오차 해석)

  • Lee, Tae-Hoon;Suh, Junho;Park, Noh-Gill
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.325-331
    • /
    • 2018
  • Automobiles and systems requiring high gear ratios and high power densities generally use worm gears. In particular, as worm gears have a small volume and self-locking function, home appliances such as refrigerators and washers consist of worm gears. We can classify worm gears into cylindrical worms and rectangular worms. According to the AGMA standard, there are four types of cylindrical worms, ZA, ZN, ZK and ZI, depending on the machining of the worm shaft. It is preferable to use a ZI-type worm shaft, which is a combination of a worm wheel having an involute helical tooth surface and a conjugate tooth surface. However, in many cases, industries mostly use ZK, ZN, and ZA worm shafts because of the ease of processing. This paper presents numerical approaches to produce ZI and ZA worm surfaces and worm wheel. For the analysis of the transmission error of a worm gear system, this study (1) generates surface profile functions of ZI profile worm gear and worm shaft based on the common rack theory, (2) adopts the Newton-Raphson method for the analysis of the gear surface contact condition, and (3) presents and compares the corresponding transmission errors of ZI and ZA worm gears.

Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness (기어이의 변동물림강성을 고려한 비틀림진동해석)

  • Ryu, Jae-Wan;Han, Dong-Chul;Choi, Sang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF

Whine Vibration in Gear Drive (기어구동에 의한 화인진동해석)

  • 최연선;신용호;김기범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3246-3252
    • /
    • 1994
  • The vibration of meshing gear system is originated form teeth deformation, teeth contact ratio, profile error, etc. The gear vibration is classified as whine vibration during meshing and as rattle vibration during idling. In this study, the whine vibration is investigated under the assumption of piecewise linearity of elastic stiffness due to the variation of meshing. Numerical, theoretical and experimental investigations show the existence of the superharmonic components of the second and the third order. consistently It can be concluded that the superharmonic components in whine vibration of meshing gear is originated from the stiffness variation. It also shows that the higher order harmonics are reduced on the increase of motor speed.

Corrective machining Algorithm for Improving the Motion Accuracy of Hydrostatic Table (유정압테이블의 정밀도향상을 위한 수정가공 알고리즘)

  • 박천홍;이찬홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.380-384
    • /
    • 1997
  • For improving the motion accuracy of hydrostatic table, corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. Reverse analysis is performed firstly to estimate rail profile from measured linear and angular motion error, in the algorithm. For the next step, correctwe machining information is decided as referring to the estimating rail profile. Finally, motion errors on correctively machined rail are analized by using motion error analysls method proposed in the previous paper. These processes can be rtcrated if the analized motion errors are worse than target accuracy. In order to verify the validity of the algorithm theoretically, motion errors by the estimated rail after corrective machining are compared with motion errors by true rail assumed as the measured value. Estimated motion errors show good agreement with assumed values, and it is confirmed that the algorithm IS effective to acquire the corrective machming information to improve the accuracy of hydrostatic table.

  • PDF

Gear Teeth Modification for a 2.5MW Wind Turbine Gearbox (2.5MW 풍력발전기 기어박스 치형수정)

  • Lee, Hyoung Woo;Kang, Dong-Kwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2014
  • This paper reports a method to modify the gear tooth profile of a wind turbine gearbox to reduce the noise caused by the impact of the gear teeth. The major causes of tooth impact are the elastic deformation of the gear teeth, shafts, and case of the gearbox under loading, and the fabrication tolerances in gear manufacturing. In this study, the tooth profile was modified considering the elastic deformation of the gear tooth and the tooth lead modification to compensate for tooth interference in the lead direction as a result of shaft deformations. The method was applied to the gearbox of a 2.5MW wind turbine, and the transmission error was characterized before and after modifying the gear teeth. For the modified gear teeth, the transmission error (67.6%) was lower by 17.8%. Additionally, the gear contact stress was reduced by 6.3%, to 22.3%.

Design of Optical Disk Profile for Minimizing the Focusing Error (포커싱 에러를 최소화하기 위한 광디스크 형상설계)

  • Hong, Seok-Joon;Jee, Jung-Guen;Park, No-Cheol;Lee, Jongsoo;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.398.2-398
    • /
    • 2002
  • Optical disk is the media which is used generally in data storage device, but it has a disadvantage in the vibration by the spinning and the shock. For overcoming these disadvantage, we must control the optical disk to minimize the focusing and tracking error. The present study investigates the disk profile fur minimizing the focusing error subjected to environmental shock and weight of the disk. (omitted)

  • PDF

A Study on the Measurement of Roundness Profile for Rotating Object Using Two Points in Succession Measuring Method (축차 2점법을 이용한 회전체의 진원도 프로파일 측정에 관한 연구)

  • Lee, Min-Ki;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1029-1034
    • /
    • 2010
  • In this paper, we present the roundness profile and run-out error measurement for a rotating shaft. The devices for measuring the roundness require a precision rotation table which is used as a reference to obtain the circular profile. Therefore, the roundness measuring system is expensive and requires precision manufacturing. The two-point method for succession measurement has been used to obtain a linear profile or used in straightness measurement using two displacement measuring devices. In this paper, the method is used for measuring the circular profile of a rotating shaft. A method to remove the vibration of the shaft, i.e., the run-out, is used, and the original circular profile is obtained from the measured raw data that excludes the run-out error of the rotating shaft. This method will be useful for obtaining the precise circular profile without using a precision reference circular artifact.

A Study on the Transmission Error of the Gear on Contact Load (접촉하중에 따른 기어의 트랜스미션 에러에 관한 연구)

  • Tak, Sung-Hoon;Hwang, Gue-Sec;Son, Yu-Sun;Bae, Hyo-Je;Lyu, Sung-Ki
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.117-122
    • /
    • 2007
  • This study deals with the TE (Transmission Error) of gear tooth by modifying a profile and lead of a surface of tooth. First, we experimentally confirmed that the TE is a synthesis of the sliding velocity between both gears. Since various types of TE appear in the experiments, we introduced definition of transmission error and the optimism design by modifying a surface parameters. The test stand's performance is then evaluated through a series of multiple torque transmission error tests. Comparisons are made between data recorded before and after the test stand's redesign, and subsequently repeatability studies are performed to verify the veracity of the measured data. Finally, the experimental results are compared to the analytical predictions of two different gear analysis programs.