• Title/Summary/Keyword: Production Process Improvement

Search Result 752, Processing Time 0.03 seconds

Noise Reduction of a Small D/C Motor Using 6 Sigma Process (6 시그마 프로세스를 이용한 소형 직류 모터의 소음 절감)

  • 차원준;최연선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.532-538
    • /
    • 2003
  • This paper studies on the noise reduction for a small automobile DC Motor (a window motor) using the 6 sigma process. The application of 6 sigma process suggested reliable and valuable statistical data for the quality of the DC motor at the production line. In the measurement step in 6 sigma process. the FMEA(failure mode effect analysis) were used for the detection of noise sources. The application of 6 sigma Process gave not only the improving method for the quality of the DC motor but also the confidence of improvement Itself since it was done on the basis of the test results for a number of DC motors at the production line. Consequently the 6 sigma process was proved very effective for the noise reduction at the production line.

Implementation of TOC/DBR under Six Sigma environment (6 시그마 환경에서의 TOC/DBR 구현)

  • 고시근;구평회;하재원;권혁무;김동준
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.2
    • /
    • pp.154-167
    • /
    • 2004
  • The TOC/DBR and Six Sigma are the most attention-getting concepts for managing manufacturing companies in Korea. Using the ideas and methods of the TOC/DBR, companies can achieve a large reduction of work-in-process and finished-good inventories, significant improvement in scheduling performance, and substantial earnings increase. The Six Sigma approach derives the overall process of selecting the right projects based on their potential to improve performance metrics and selecting/training the right people to get the business results. These two concepts have different backgrounds and different viewpoints for production systems. So, if the two concepts collaborate each other, the synergy effects to innovate production systems can be expected. This paper proposes a new approach to implement the TOC/DBR concepts in production systems. This approach uses some concepts of Six Sigma which stresses educations, project approaches (step by step procedure using a Roadmap), and improvement philosophy.

Durability Study of Blower Motor Noise (블로워 모터 소음의 내구성 고찰)

  • Lee, Myung-Han;Ih, Kang-Duck;Hwang, Dong-Woo;Lee, Hyeon-Heui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1115-1119
    • /
    • 2007
  • As in many of the vehicle NVH issues, blower motor noise has been improved over the years through intensive R&D and production process improvement. Durability of motors, however, still has room for improvement according to customer surveys such as VDS. To investigate the noise issues of blower motors in view of durability, current production motors along with major competitor motors are tested. The noise after accelerated durability test shows that production motors are competitive in noise level with similar noise performance compared to initial measurement. The test result also provided guidelines to the durability development process.

  • PDF

The Development of New Cost-Effective Optimization Technology for OLED Market Entry

  • Kwon, Woo-Taeg;Kwon, Lee-Seung;Lee, Woo-Sik
    • Journal of Distribution Science
    • /
    • v.17 no.4
    • /
    • pp.51-57
    • /
    • 2019
  • Purpose - This study aims to improve the distribution structure of the OLED market and develop cost-effective optimization techniques. Specifically, it is a study on the optimization of ferric chloride to improve the etch of SUS MASK for OLED. Research design, data, and methodology - Applying the optimal conditions of the experiment, the final confirmation was evaluated for improvement by the Process Capability Index (Cpk). It is possible to derive social performance such as improvement of precision of SUS MASK manufacturing, economic performance such as defect rate, reduction of waste generation and treatment cost, technological achievement such as SUS MASK production technology, improvement of profit structure of technology development and process improvement do. Results - The improvement of the Cpk before the improvement was made was confirmed to be 0.57% with a defect estimate of 25.07% with a failure estimate of 0.57% after the improvement, and 8.84% with a failure estimate of 0.57% level after the improvement. Conclusions - If the conclusions obtained from the specimen experiment are applied to the manufacturing process of SUS MASK, it will be possible to expect excellent cost-effective competitiveness due to the improvement of precision and reduction of defect rate to enhance the OLED market penetration.

Production of Sorbose by Fermentation

  • Y. M. Koo;Y. G. Kim;D. Y. Ryu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1976.04a
    • /
    • pp.183.4-184
    • /
    • 1976
  • Sorbose is an important raw material for the production of Vitamin C. As part of our endeavor to develop on improved vitamin C process, we first studied the sorbose fermentation process. Several important variables that influence the productivity of sorbose were considered and evaluated. The yield sorbose from sorbitol obtained was greater than 90%. Details of our experimental results will be discussed and a possible new approach to process improvement will be suggested for more efficient sorbose fermentation.

  • PDF

Process Reliability Improvement and Setup Cost Reduction in Imperfect Production System

  • Lee, Chang-Hwan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.4
    • /
    • pp.93-113
    • /
    • 1997
  • In studying an EOQ-like inventory model for a manufacturing process, a number of findings were made. The system can "go out of control" resulting in a relatively minor problem state or "break-down". When the production system is in the minor problem statei produces a number of defective items. It is assumed that each defective piece requires rework cost and related operations. Once the machine breakdown takes place, the production system produces severely defective items that are completely unusable. Each completely unusuable item is immediately discarded and incurs handling cost, scrapped raw material cost and related operations. Two investment options in improving the production process are introduced : (1) reducing the probability of machine breakdown, breakdowns, and (2) simultaneously reducing the probability of machine breakdowns and setup costs. By assuming specific forms of investment cost function, the optimal investment policies are obtained explicitly. Finally, to better understand the model in this paper, the sensitivity of these solutions to changes in parameter values and numerical examples are provided.amples are provided.

  • PDF

A Study on Improvement of a Production System in Small and Medium Sized Shoes Companies using Simulation (시뮬레이션을 이용한 중소 신발생산기업의 생산시스템 개선방안 연구)

  • Lee, Kyung-Keun;Yun, Won-Young;Moon, Il-Kyeong;Cho, Hyung-Soo;Cha, Byung-Chul
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2005
  • A production system in domestic shoes companies has difficulty in achieving automation and information because of insufficiency of flexibility and standardization. Particularly small and medium sized shoes companies producing by OEM have tendency to chase the given production schedule blindly without considering major factors that may affect the production. Therefore, the production schedules or the process conditions can not be optimally set and are extemporized by the experience in the past. These behaviors cause low productivity and financial loss. To maximize efficiency and productivity of the shoe-making process, we develop a simulation model based on a production system in small and medium sized shoes companies. The model has been developed using ARENA which has been demonstrated to be a powerful tool to simulate various manufacturing systems. Using the simulation model, we find out several problems for the production process, and then suggest several alternatives to improve the system.

Noise Reduction of a Small D/C Motor using 6 Sigma Process (6 시그마 프로세스를 이용한 소형 직류 모터의 소음 절감)

  • 차원준;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.509-514
    • /
    • 2002
  • This paper studies on the noise reduction for a small automobile DC Motor (a window motor) using the 6 sigma process. The application of 6 sigma process suggested reliable and valuable statistical data for the quality of the DC motor at the production line. In the measurement step in 6 sigma process, the FMEA(Failure Mode Effect Analysis) were used for the detection of noise sources. The application of 6 sigma process gave not only the improving method for the quality of the DC motor but also the confidence of improvement itself since it was done on the basis of the test results for a number of DC motors at the production line. Consequently the 6 sigma process was proved very effective for the noise reduction at the production line.

  • PDF

A Study on the Risk Identification Methods for Initial and Mass Production Stage of Military Products Using FMEA (FMEA를 활용한 군수품 초도 생산 및 양산 단계의 위험 식별 방안 연구)

  • Lee, Chang Hee;Yang, Kyung Woo;Park, Du Il;Lee, Il Lang;Kwon, Jun Sig;Choe, Il Hong;Kim, Sang Boo
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.3
    • /
    • pp.311-324
    • /
    • 2014
  • Purpose: It can deduce improvement plan that recognizes any risk factors in initial production and mass production by using FMEA and through this process, the appropriate criteria for defence items can be established. Methods: It proposes two methodology - Apply DT/OT data achieved from the beginning mass production stage based on FMECA data of the design stage, to risk management, and risk management plan that reflected line and field faliure data in case of is offered. Results: It proposes the risk management plan through Bayesian method and the risk identification that considered MTTF estimated value in case of initial production process. In case of mass production process, both risk identification by using fault occurrence frequency scores and Byaesian method, In case of the Initial production and mass production, it proposes use both two methods. Conclusion: A more realistic risk identification method can be applied, and by this method the quality improvement effect is expected.

A Simulation Study for Evaluation of Alternative Plans and Making the Upper-limit for Improvement in Productivity of Flow-shop with Considering a Work-wait Time (흐름생산 공정에서의 작업 대기시간을 고려한 공정 개선 상한선 도출 : H사의 공정 개선 계획안 시뮬레이션 사례를 중심으로)

  • Song, Young-Joo;Woo, Jong-Hun;Lee, Don-Kun;Shin, Jong-Gye
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.2
    • /
    • pp.63-74
    • /
    • 2008
  • The design of best efficient production process is common requirements of the production strategy department and the process planning department to maximize the revenue and accomplish target production volumes in the production periods. And they use several general methods for that-line-balancing, removing of the bottle-neck process, facility ramp-up, increasing of the worker's utilization, etc. But, those methods have depended on analytic, static and arithmetic calculations, yet. So, irregular work-waiting time causing the delay time isn't include in extracting production capacity, especially in the line production process. The work-waiting time is changed irregularly along the variation of each machine and very important for calculate real product lead-time and forecasting target production volumes. At this thesis, i'm going to mention the importance of the delay time of conveyor system which can be extracted by discrete-event simulation. And suggest it as a new main variable that must be considered at designing new production system. Then experimented and tested that's effects in the H-company case, conveyor based line production process.

  • PDF