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Process Reliability Improvement and Setup Cost
Reduction in an Imperfect Production System

Chang Hwan Lee *

Abstract

In studying an EOQ-like inventory model for a manufacturing process, a number of findings were made.

"

The system can "go out of control” resulting in a relatively minor problem state or “break-down.” When
the production system is in the minor problem state it produces a number of defective items. It is assumed
that each defective piece requires rework cost and related operations. Once the machine breakdown takes
place, the production system produces severely defective items that are completely unusable. Each
completely unusable item is immediately discarded and incurs handling cost, scrapped raw material cost and
related operations. Two investment options in improving the production process are introduced: (1) reducing
the probability of machine breakdowns, and (2) simultaneously reducing the probability of machine
breakdowns and setup costs. By assuming specific forms of investment cost function, the optimal investment
policies are obtained explicitly. Finally, to better understand the mode! in this paper, the sensitivity of these
solutions to changes in parameter values and numerical examples are provided.

Keywords: Inventory, Production, Quality

1. Introduction

Recent studies of Just-In-Time (JIT) systems have emphasized small production lot sizes and
frequent deliveries. It has been widely reported that smaller lot production not only reduces inventory
holding costs but also increases process quality (see, for example, Porteus (1986)). However, one of

the major impediments to the successful operation of such tightly coupled organizations is the
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breakdown in bottleneck resources or the production of defective items, Thus, the model discussed
here has been designed to investigate the option of investing in a production process improvement
program to reduce the defective items and impact of equipment breakdowns on the operating policy
in an EOQ-like inventory system. A similar concept was mentioned by Hutchins (1992), with regard
to the case of the Matsuchita Refrigerator Company. According to him, the company spent more
time in preproduction stages than its western counterparts. However, this time scale is the only
persistent area of Japanese inferiority, as Hutchins points out. Following the launch of production, a
Japanese company needs two weeks to achieve >99 percent defect-free production, compared to its
typical western counterpart, which is 40 percent defect-free two years after the launch of production.

In brief, the inventory system considered in this model is subject to two types of uncertainties:
The first type is the production of defective items. This has been studied extensively by Porteus
(1986, 1990), Rosenblatt and Lee (1986), Lee and Rosenblatt (1987), and Lee (1992). We refer to
Yano and Lee (1995) for a review. Among these, Porteus (1986) and Rosenblatt and Lee (1986)
model the stochastic process of making defective items very simply: while producing a lot, a process

”

may go “out of control.” Once the production process is in that state, it is assumed that it will
produce defective items and continue to do so until the entire lot is finished. At the beginning of the
next lot's production, the process is restored to the same initial in-control state. The second type of
uncertainty is machine breakdowns, which has been considered by Groenevelt, Pintelon, and
Seidmann (1992a,b). Their assumptions are that the production process can be interrupted by
machine breakdowns, and that the times until the breakdowns are exponentially distributed. The
production process improvement program to be considered in this model extends the work of Porteus
(1986). The novel aspects of this model, compared to Porteus's (1986), are, first, his model
addressing the benefits of improved quality control. Here we begin to consider effects of improved
process reliability (fewer machine breakdowns). We show that greater reliability can both reduce the
optimal target lot size and improve output quality. Second, Porteus explicitly shows a significant
relationship between quality and lot size. We have extended this relationship to include a reliability
issue (machine breakdown). Therefore, both the relationship between quality and lot size, and that
between reliability and lot size, and reliability and quality, are investigated in this work.

Two options for investing in the improvement of the production process are introduced: (1) reduce
the probability of machine breakdowns, and (2) simultaneously reduce the probability of machine
breakdowns and setup costs. The mathematical formulation for the investment cost function is similar
to that for the setup reduction models and their related topics. These models have been studied
extensively by Porteus (1985, 1986), Spence and Porteus (1987). and Fine and Porteus (1989), to

name a few, so explanatory details are omitted here.

This paper is organized as follows. In § 2, assumptions and the stochastic nature of the production
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system are described. In § 3, an optimal lot size that accounts for defective items and machine
breakdowns is specified. In § 4, a process reliability improvement program to reduce the probability
of machine breakdowns is analyzed. In § 5, a simultaneously process reliability improvement and

setup reduction program is studied. Conclusions are provided in the final section.

2. Problem Definition

Let us assume a traditional EOQ world in which the basic model is modified as follows. First,
while producing a single unit of product, equipment breakdown occurs with probability o (1—a= 8).

That is, the production system is assumed to follow a two-state Marcov chain during production,
with a transition occurring with each unit produced. Once the breakdown takes place, the production
system begins to produce severely defective items that are completely unusable. Equipment
maintenance (including repair of the broken machine) is carried out at the beginning of the next
lot’s production. The time for repair and setup is assumed to be negligible. Each maintenance action
restores the system to the same initial working conditions. Throughout the work we will use the

term “unusable items” to refer to the items produced in machine breakdown state.

Second, while in production, with probability g(1 —g=p) the production system can “go
out-of-control”, The production system begins to produce defective units. The stochastic process is
similar to that for equipment breakdowns that is, it follows a two-state Marcov chain, with a
transition occurring with each unit produced. Once the system is out of control, it remains that way
until the remainder of the target lot has been completed or equipment breakdown takes place. Each
defective item incurs an extra cost for reworking and related operations. Again, each maintenance
action restores the system to the same initial working conditions. We will use the term “defective
items” to refer to the items produced in “out-of-control” state.

The assumption that the machine can either go “out-of-control” (producing defective items) or
breakdown (producing unusable items) is based on the work of Pate-Cornell, Lee and Tagaras

{1987), in which they assume that the production system can be in one of the following four states:

(1) State 1: perfect condition: (2) State 2: minor problem:;
(3) State 3: major problem: or (4) State 4: machine break-down.

Our assumption of “out of control state” is analogous to that of States 2 and 3, and our

assumption of machine breakdown is akin to that of State 4 in Pate-Conell et al. Pate-Conell et al.
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assume that States 2 and 3 can be observed at the earliest L time units after it occurs, and the
failure of the machine (state 4) is assumed to be immediately detected. We assume that both “out
of control” state and “achine breakdown state” can only be detected after the whole lot has been
completed. This assumption has been used by Rosenblatt and Lee (1986), Lee and Rosenblatt
(1987), and Porteus (1986, 1990: for the case in which @< C}/(gCr@)+ Qp+ Q). Porteus

(1986) furnishes an example of such operation

“--One interpretation is that the firm uses the inspection policy suggested by Hall (1983) that
inspects only the first and last pieces of the lot. (If the last piece is good, then the entire lot is

judged to be good. If not, further inspection is needed to determine the defective pieces.)....

In addition, the assumption that when the machine is in an “out of control state” or “machine
breakdown state” all items produced are defective or unusable is based on the work of Porteus

(1986,1990). Porteus (1990) provides an example of such an operation.

®..This Simple Modeling approach is supported by Moden (1983)... A high-speed automatic
punch press, for example, where lots of 50 or 100 units are kept in a chute, only the first and
the last unit in the chute are inspected. If both units are good, all units in the chute are

considered good

Figure 1 illustrates the resulting sample path for this model. For example, the first inventory cycle
represents the case in which the target lot is accomplished, and the whole produced lot consists of
good items. The second cycle illustrates the case in which the target lot is not achieved due to
machine failure, However, the produced lot consists of good items. The third cycle illustrates the case
in which target lot is achieved. However, a portion of the produced lot is defective, and require
reworks. The fourth cycle shows the case in which a target lot is not achieved due to machine
failure, and a part of the produced lot consists of the defective items

We begin our analysis by briefly introducing the notations. Let P be the cost of production, Q the
target lot size, 7, the opportunity cost rate ( Pr; holding cost), #, the unit rework cost as a
percent of production cost, #, the unit cost for disposal of each completely unusable item.  the
deterministic, constant demand rate. The case of a finite production rate m is covered by adjusting
d=d(m/{(d+m)) ., S the setup cost, Z(Q) the expected lot size including good items and
defective items, and &7 the expected defective items. Note that neither setups nor production time
are assumed to be time-consuming in this model. The shortages are not allowed. We develop the

expected lot size Z(Q) for a target lot size of Q, and the expected number of defective items .
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Figure 1. Inventory Sample Path

Lemma 1.

(1.1) The expected lot size (including good items and defective items) is

2@ = K1=89 M)

which is strictly concave and strictly increasing in Q. We see that Z(Q < Bla, and
g_rgo QD =PBla Lett; = Q—Z(Q) be the expected number of completely unusable

items due to machine breakdown, which is a strictly increasing, strictly convex function of Q.

(12) The expected number of defective items is

_ Q
82 — Z(Q)— Bp(ll_'(gﬁp) )

which is strictly increasing in @ . Y(Q) = Bo(1—(B0)D /(1 — Bo) is the expected number
of good items. and it is strictly concave and strictly increasing in @

Proof. The proof of Lemma 1 is given in Appendix 1.
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Lemma 1.1 and 1.2 give the expected lot size and the number of defective items. For example, if
g=10.01, = 0.01,andQ = 100; then the expected lot size Z(Q) and defective items S, are

62.76(62.76% of 100) and 20.11(32% of 62.76), respectively. If @ is decreased to 0.001, and Q is
decreased to 65, then the expected lot size and defectives are 62.96(97% of 65) and 16.84(27% of
62.96). These figures tell us two things. First, a system with relatively high reliability (small « )

incurs fewer unusable items. Second, the percentage of defectives is smaller for a reliable system.

3. Optimal Lot Size

Our first objective is to determine the optimal lot size Q" ie. the target lot size that minimizes
the long-run average cost per unit time while accounting for the quality and reliability effects of this
model. Note that the inventory process has a renewal epoch at the beginning of each inventory cycle
due to setup operations. Therefore, using the well-known renewal reward theorem, the long-run
average cost can be found by taking the ratio of the expected cost per renewal cycle and the
expected duration of a renewal cycle. The long-run average cost function (3) consists of setup,
holding, rework, and disposal costs.

Pr,Z(Q

TWQ = ng) + L +Prsd{1—%g)l} + Pr.d [7&5—1] (3)

An optimal target lot size Q" minimizes cost expression (3). Proposition 1 summarizes the

structural properties of the model.

Proposition 1. When a and q are very small:

(1a) The total cost is approximately

~_dS_ | ZQPn+dra+ra)ls) "
- Z2Q 2

(1.b) Optimal expected production Iot size minimizing (4) is

N 2dS
Q) = ‘/ P(rtdratrad) 5
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By Lemma (1.1), the optimal target lot size Is

¢ = WU=UD oy (5)
nB a

(lc) If (5) exists, then the optimal cost is

TW@QH = C&H = \jzarsp [,14_%[;7@_]

(1d) C(Q%) s strictly increasing and strictly concave in q, rn, P, r, v,, S, and d and

(6)

strictly decreasing and strictly convex in

Proof. Proofs for Proposition 1 are given in Appendix 2.

Proposition 1.b tells us that optimal production lot size Q" can be obtained by computing Z* first,
and then substituting it into (5). Proposition 1.b also shows us that the optimal solution approaches
infinity as Z* approaches B/a. However, the model assumes @ to be very small so that the ratio
Bla, is relatively large. Therefore, there is a relatively wide feasible area for the optimal solution.
Propositions 1.d tells us that the parametric properties of the classical EOQ model are preserved in
this model. Consider a numerical example given in Porteus (1986): S = 100, 4 = 1000, »; = 0.15,
r. = 0.5, ¢ =0.0004, P=50, and B = 0.999. Here, additionally, we let », = 0.03. If the
quality and reliability effects of this model are ignored that is, if the classical EOQ model is used,

then, @ Z(Q), and &, are 163.3, 150.6, and 4.7 respectively, and the total cost by (3) is 2,141, If

g=0.0004
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Figure 2. Z2(Q), Q and & as a Function of 8
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Figure 3 . Long-run Average Cost Components as a Function of #

the formula from (5) is used. @, Z(Q"), and &, and drop to 108.2, 1025, and 2.2, respectively,
and the total cost by (3) is 1,973, which is a 7.8% reduction.
Here, with the same set of numerical examples, the model is studied in light of changes in the

underling parameter values. Figure 2 illustrates that Q" is decreasing, convex in 8, and Z* is

creasing, concave in 8, We also see that @' — Z* and 6;/Z" are decreasing in A. Therefore,

improving reliability not only can reduce the unusable items, but also can reduce the percentage of
defectives.

Figure 3 gives the total costs per unit time of the optimal policy and its components as a function
of A. As expected, the expected rework costs decrease with 5 due to the percent of defectives
8,/ Z" decreasing in B . As J increases, the average inventory holding costs increase. This
increase is the result of an increase in Z'. Finally, setup costs decrease in £ because a reliable
production system requires fewer setups. We also see that the optimal total cost function is strictly

convex, decreasing in £ . In Figures 2 and 3, some variables are modified to fit into one graph.

Their general shapes are preserved, however. Some of the properties shown in Figures 2 and 3 also
are verified in Proposition 1.

Figure 4 displays the total cost as a function of @ for 8= 0.992, 0.994, 0.999. For a

smaller value of S the optimum value of @ shifts to the right. If we let 7, = 0, then the total
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Figure 4. Long-run Average Cost as a Function of Lot Size

cost function can be illustrated as in Figure 5. Interestingly. the cost function flattens out for smaller

values of B For unreliable machines, actual lot size (including good items and defective items) will

almost always be determined by equipment breakdown. Therefore, when all other factors are kept

unchanged, the cost function is almost indifferent to the target lot size after it passes a certain

number. The two properties mentioned above also have been verified by Groenevelt, Pintelon and
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Figure 5. Long-run Average Cost as a Function of Lot Size
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Seidmann (1992a) in a similar model with a different set of assumptions about the machine

breakdown process,

4. Process Reliability Improvement

Here we improve the reliability of the production system by investing in the reliability improvement
program. The approach used to tackle the problem is the reduction of the reciprocal of S8
Therefore, the lowest possible value of 1/ 8 is 1 (when 8 = 1), and the highest possible value
of is 1/8° (when 8= £°), In this way, we choose the optimal 8 value between [ 8%, 1] to

improve the production system'’s reliability. In common with other works (for example, Porteus (1985,

1986)), we assume that the investment cost function has a particular form and then derive the
explicit results. Let bg7; In(B/8°) be the investment cost of changing the reciprocal of £ from
the original to the improved level, where bg is the cost of making an approximately 63% reduction

in 1/8. The particular form of the investment cost function is well documented in Porteus

(1985): therefore, explanatory details are omitted here. In general, we minimize

min @ (Q", §) = C(Q", B) + byr, In(B/ ) (7)
A<B=<1

In the following work, with the assumption that 6 is near 1, we let

N 2dS
4Q) = | Frrata D 5D
Q) = Uz = \/;dSP(r1+M[;:r”—a)) (61)

The reasons for using the approximation are twofold. First, in so doing, the analysis in the latter
portion of the paper can be greatly simplified. Second, if £ is significantly large, then the accuracy
of the approximation should not be reduced too much. Consider again the numerical example

discussed earlier, with the addition of four levels of 8 = 0.992, 0.993, 0.995, and 0.999. The

accuracy of the approximations is determined by testing one against the other and the exact optimal
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Table 1. Comparison of the Optimal Solutions

B8 0992 | 0993 | 0995 | 0.999
Optimal Q by (5.1) 135 128 119 108
Total Cost by (3) 3045 2831 | 2482 | 1972
Optimal Q by (5) 134 127 118 108
Total Cost by (3) 3034 2824 | 2481 | 1972
Exact Optimal 86 91 95 105
Total Cost by (3) 2816 2688 | 2436 | 1972
’ .
Betweefl) F;.l(;oztml; lgz;ecrtlcgptimal 8.1 52 18 )

solution, where the exact optimal solution is numerically searched from cost function (3).
Approximations are obtained from (5) and (5.1) Total costs are obtained by substituting them into
cost function (3). Table 1 shows that the total costs and target lot sizes obtained from (5) and
{(5.1) are almost identical when B is relatively large.

Proposition 2 summarizes the decision rules of the optimal solution,

Proposition 2: Optimal Probability of Machine Breakdowns.

We use min ,\, C (Q") to denote x or y, which minimizes C (Q").

(2a) The situation is divided Into three mutually exclusive and collectively exhaustive cases.
Case 1. 7> dry, or (bgr))? — 2PdS(7,d — 7) 20 and d(rg+7,) /2(dr,—n)> 1,

o(Q",B) has a unigue local minimum S'on [ 8°,1] and the optimal solution is given In

Proposition 2.b.

Case 2 (bg r)? — 2PdS(r,d — »)=0 and d(»gq + »,)/2(dr, — r) <1 The optimal

solution satisfies min L, ge1y; C (Q") . where B' is given in Proposition 2.b.

Case 3 (bgr)* — 2PdS(r,d — ») <0, The optimal solution is B8 = 1

(2. b) The optimal probability 8* satisfies 87 = min[max[g°, 8'1,1]. where B' satisfies



104 Chang Hwan Lee BESSR e

(rg+ 7,) PSd*
(b7 )+ barV (bgm)? — 2PdS(dr,— 1))

g =

(2¢) B is increasing in P, d, S, vs, ¥, and q, and decreasing in bg, and 7

Proof. The proof for Proposition 2 is given in Appendix 3.

Proposition 2.a reveals that a unique optimum solution may exist in [A° 1] under certain
conditions. Proposition 2.b gives the optimal solution: Proposition 2.c tells how the optimal solution
varies as a function of the parameters. Here the probability of machine breakdown (g) is negatively

related to the probability of making defective items (@). That is, the lower the process quality is, the
greater the investment should be in improving process reliability, Consider again the numerical

example discussed earlier, adding the option of investing in lowering the probability of machine

breakdown, and let b;=100,000. Proposition 2.a suggests B be increased to 1. The total cost by (3)

is 1,883, a 12% reduction on the classical EOQ model. @, Z(Q"), and &, are, respectively, 107,
107, and 2.3.

5. Optimal Reliability Improvement and Setup Reduction

In this section we will investigate the option of simultaneously reducing the probability of machine

breakdown and setup costs. In general, we seek to minimize

min o(Q", 8,9 = C(Q,8 S + by In (B/8) + bsryIn (S°/S) (9)
B,S

where bg7; In (S°/S) is the investment cost of changing the setup cost from the original level

S° to the improved level S, and bg is the cost of making an approximately 63% reduction in S.
If we only consider the option of setup reduction. then, as shown in Porteus (1986), the optimal

setup reduction policy is S* = min[S° S']. where S!satisfies

z(bs 7/1)2

1
S = Gt drat iR 1o
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which is a strictly increasing function of A, That is, the higher the process reliability, the lower
the investment in the setup cost reduction program. Proposition 3 summarizes the decision rules

under different situations.

Proposition 3 We divide the situation info four mutually exclusive and collectively exhaustive

€ases.

Case 1. If dr,— r;> 0 and by {bs, then the optimal probability of machine breakdowns is

g =1

Case 20 If dr,— 71> 0 and bg = bs.

(dr, — r)B° b,

IF1- (5= then B =1,

(rea + r,d) ~ by
. (dru - 71)30 bs . . e . - *
Else if 1 (r.a¥r.d b by then the optimal solution satisfies min g, C(Q"),

Case 3 If dr, — r\<0 and bg < bs,

_ ldry—7n) gﬁ
(rig+ 7, d) ~ by

, (dru— 7’1) bs . . . * s
Else if 1— g 7. d) > bs then a unique optimal solution B’exists on [A°,1).

I 1 then B = 1.

Case 4. If dr,— v1 <0 and b3 b, then the optimal probability of machine breakdowns is
g = 8.

The optimal setup cost for 8° = B or 1 can be obtained by directly substituting 8" into (10).
Proof. The proof for Proposition 3 is given in Appendix 4.

For the purposes of the next proposition, let

SodP( " + d( 7,sq_'_ 7’uaa)/Bo) SodP( - Tud)
Sl = 7 , SZ = 2 s
271 27’1
(r\—r.d)B° & S°P(r.q+ 7))
B = -t 41, S =
drsa+ 7. BV 2S dP(r+ d ra+ 7 B)
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Proposition 4 summarizes the decision rules for the optimal simultaneously process reliability
improvement and setup reduction program when dr, — 7 <0 and by < b, (Case 3 in

Proposition 3.)

Proposition 4. The following approach resembles that of Porteus (1986) in many ways. We now
introduce four different cases that emerged through this process.
Let

Cl: ={b,/bs> S3, blb—bg) < 2, €2 =1{b,< Sl, b,/ bs< SI).
G = {by< S, b(b,—by) =S and Ck = {b,>Sl,bs>S4} .

(4a) C1, C2, C3, and C4 are mutually exclusive and collectively exhaustive.

._d " * s 0
Ty = 6y e 8218 = SO = ma 57

(7’1 _ dru) bs . . e
(4dc) If 1 + (roq + 7.d) > by’ then the optimal solution satisfies one of the

2( bs 71)2

(4b) If 1 + m

following four cases,

Case C1: Cl holds if and only if

o olraly _ b —b(raat r)d . _ 2b(b, = byt
g = piSH = 5, — ) , §" = SY(BH = —g__dP(rl—rud) ,

SYBY) and B(S') are obtained by simuitaneously solving (10) and (8).
Case C2: C2 holds if and only if

. . ) _ 2(1757’1)2
g =4 s =5N= dP(r+d (r,q+ a2 )

S} B°) is obtained by substituting B = B into (10).

CaseC3:C3 holds If and only if

(r,q+7,) PS"d*

L SO, * 1 O —
S g g (S ) (bﬁrl )2 + b,g7’1\/ (b,grl)z - 2Pd50(7ud“ 7’1)

B(S®) is obtained by substituting S* = S° into (8).
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Case C4: C4 holds if and only if S* = S°, B = A,

Proof. The proof for Proposition 4 is given in Appendix b.

The following example illustrates the optimal policy described in Proposition 3. We allow both setup
reduction and process reliability improvement programs. Consider again the numerical example given

above, In addition, let bz = 100,000, #», = 0.15, and &, = 3000, The example shows

by > by and 1—(dr,— # )8/ (rsq+r.d) < b/ bs; hence, by Proposition 3 the first part
of Case 2 applies. The numerical example is summarized in Table 2. For example, Classical EOQ
gives the result of the classical EOQ model that is, we assume that ¢ and A are equal to 0
and 1, respectively, even though they are not. ¢, 8 adjusted EOQ leads to the result of the EOQ
model discussed in section 3: optimal adjusted [#3 provides the result for the EOQ model discussed
in section 4 (reliability improvement). The optimal adjusted setup reveals the result for the setup

reduction program, adjusting for ¢, B . Finally, the optimal setup and £ provide the results for
the setup reduction and reliability improvement programs.

Table 2 reveals that the cost savings generated from the reliability improvement and setup
reduction programs are 28.8% and 34.5%, respectively. A total reduction of 404% is achieved

through the simultaneously reliability improvement and setup reduction programs.

Table 2. Results of the Numerical Example

Classical qg.f Optimal Optimal Optimal
Characteristic £OQ Adjusted Adjusted Adjusted Setup
EOQ B Setup B
B 0.999 0.999 1 0.999 1
S 100 100 100 16.20 23.14
Q 163.3 93.7 106.9 36.6 514
Z(Q) 150.6 89.4 106.9 359 514
% Shortfall 7.8 46 0 19 0
Cost 2645 2275 1883 1733 1577
% Savings - 139 28.8 345 404
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Table 3. Results of the Numerical Example

Classical q.Ff Optimal Optimal Optimal
Characteristic EOQ Adjusted Adjusted Adjusted Setup
EOQ B Setup 8
B 0.997 0.997 1 0.997 1
S 100 100 100 10.1 23.14
Q 163.3 79.5 106.9 23.3 514
Z(Q) 1289 706 106.9 22.4 514
% Shortfall 21.0 11.2 0 3.6 0
Cost 4003 3008 1913 1962 1607
% Savings - 24.9 52.2 50.9 59.9

We now continue to consider a less reliable system. We let 8 = 0.997; everything else remains
the same. Table 3 summarizes the numerical example. By observing the two examples, we see that
the contributions of the reliability improvement program become more and more significant as the

system becomes less and less reliable,

6. Conclusion

An EOQ-like inventory system subject to machine breakdown and the production of defective
items is considered. Two manufacturing process improvement programs were studied here using
EQQ-Iike inventory models, The first introduces the option of reducing the probability of machine
breakdown: the second introduces the option of simultaneously reducing the probabilities of machine
breakdown and setup level. The economic production lot size, investment policy, and properties are
provided. Finally, to better understand the model in this paper, the sensitivity of these solutions to
changes in parameter values and numerical examples are provided. The numerical examples illustrate
that the contributions of the reliability improvement program become more and more significant as

the system becomes less and less reliable.
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Appendix 1. Proof of Lemma 1

Lemma 1.1. The expected production lot size is
d M a S 0= d T+ e - T 0] = e-(0-2(Q) = 2.

The results follow since Z(Q) = —(8%°InB8)B/a> 0. Further differentiation reveals that the
second derivative is strictly negative. Since — 8% Inf < — BB <1 — B, we see that Q@ — Z(Q)

is a strictly increasing function of €. The second differentiation reveals that the second derivative is
strictly positive, which proves the resuit.

Lemma 1.2. The expected number of defective items is

5, = a[ gg)ﬁk(qkz) p'— qlzl ipi) + 20,9’*((1@2 o — qg ipi)]
- Eole- A7) (o) - Fo))

a[(EB’%— ‘gﬂ’f@) + %(E(ﬁp)k— Z’Oﬂkpc) + (Q—ﬁ(l—;‘ﬁ) & &

- (H05-q + o= 444g0)

Direct differentiation reveals that

_ (Bo)®BomBo _ B8%°InB
962/ 0Q = 1- B0 1-8
BQ+1

T30 g ¢°" mB1=8) + 0 Inp(1 — 8 — AL — Bo))

. 0“"'inp elnp | _ In B
We see that 80/ dQ> 0, since 0> T -0 -3 > 10> 1’14
which proves the result, It easily follows, upon differentiation, that the sign of Y'(Q) > O and
Y (@) <O0. O

Appendix 2: Proof of Proposition 1
Proposition 1.a. When a is very small. 1—8*= —( mB8)x— [ ( mB)x])?/2. We also see that
when 8=1/2, mf= (—a/B + (—a/R2+(—a/B°%3 +.... Assuming a is very small,
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we use the first term for the approximation. Thus, Z(Q) = Q[1 — a®Q/28]. Similarly, when ¢
and a are very small Y(Q) = Q1 — (1 — Bo)Q/2Bp). Therefore,

~_ Y@ ~_ &4
0:/ 2= 1= 70y = 25oA(0) (Pla)

By linear approximation Z(Q) = A(1— 8% /a= —AQInB/a. Now given that a is very small
(=BmpP)/a= —Bl(—a/B+ (—a/P*/2+..1/a=(1 —a/20)=F and s0o Z(Q) = QB,
Substituting the approximation into (Pla.l) gives 87/ Z = Z(Q) q/28°0. Finally, as in Porteus

(1986), the result follows upon using o = 1, Table 4 compares 8z/Z and Zg/28p. 1t tells us

that the approximation approaches the exact solution as the target lot size increases.

Table 4. Comparisons of 8,/ Z and Zg/28% (B=0999, o =0.999)

Q 10 20 30 40 50 60 70 80
821 Z 0.548 1.04 1528 | 2.011 2489 | 2962 | 3430 | 3.894
Zq/ 28 0499 | 0994 | 1483 | 1967 | 2448 | 2922 | 3392 | 3858

% of Difference 8.82 4.46 2.94 2.15 1.67 1.34 111 0.94

Similarly, we see that 7&5 —1l=7 9&4(12/3 55 = ggzz = 205 , Table 5 compares ¢/ Z
and Za /28
Table 5. Comparisons of &z/Z and Za/28° ( 8=0.999)
Q 10 20 30 40 50 60 70 80
§21Z 0.551 1.054 1.559 2.065 2.573 3.083 3.594 4,108
Zal28 0.499 983 1.481 1.966 2445 2919 3.389 3.854
% of Difference 9.54 5.87 498 484 5.00 5.32 5.72 6.18
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Propositions 1.b-1.c. These results were derived after differentiation and substitution.

Proposition 1.d. Let f, denote the differentiation of f by «x.

drs
Variable ¢ Direct computation reveals Z, = —Z" ( 2+ & 754:_ DR ) < 0.

Further analysis shows that the second derivative is strictly positive. The first differentiation reveals

that C,(Q") = Z'dPr,/ 28 > 0. Further analysis shows that the second derivative is strictly

negative.

d § + U
Variable 4 : Direct computation leads to Z3 = Z° ( (370 + 7.5) ) > 0.

2.84(71 + d(rsq + rua)/ﬁa)

Further computation tells us that the second derivative is strictly negative.

The first differentiation shows that Cx(Q") = —Z dP B(rg+ 7,) —28r,) <0.

28
According to further analysis, the second derivative is strictly positive. Other conqlusions follow from

direct differentiation and substitution

Appendix 3: Proof of Proposition 2

Proposition 2.a. Let w (8 = Bow(B) /68 = bgr, — S&"P(r,q + 7,) | BO(Q"). We see
that @ (B) has the same sign as w(f8), It easily follows, upon observing the term BC (")

(see (6.1)), that w(B) is a strictly increasing function of B if dr, < r;, Since (i) lg_rpo w (B <0,
and %1_1:130 w (B >0, (i) w(B is a strictly increasing function of B The first part of the Case

1 follows directly. Assuming now dr, > 7, we see that w(B) = 0 implies

G(B) = (byr BC(Q))*—(SAP (r,q + 7.))*

=—(Sd*P (r,q + 7,))* — 2SdP (bgr)*((dr, — )8 — dr,qg + »,)B) = 0.

The parabola G(B) has the same sign as @ (8), and has a highest vertex at B8’ = d( v+ 7))
/2(dr, — 7). Direct computation reveals that G(B") = 0=>2dPS(dr, — 7))/ (bgr)?* = 1.
Hence, 2dPS(dr,— )/(bsr)* > = G(B) < 0V R<[0,1]. That is. w(p) is a strictly decreasing
function of B. Therefore, the optimal solution is B8 = 1. This proves Case 3. Assuming now
2dPS(dr, — r) / (b,grl)2 <1, w(p) is a convex, concave function of B. Here, we partition the
situation into two exclusive cases. Assume first A° > 1; this then implies the concave part of w(p)

exists in [1, o] therefore, the second part of Case 1 follows. Assuming now B°<1, this
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implies that the convex and concave parts both exist in [0, 1] Therefore, the optimal solution locates

either on the extreme point or on the boundary. This completes the proof of Case 2.

Propositions 2.b, 2.c. Proposition 2.b follows from solving G(8) = 0, Proposition 2.c follows from
direct differentiation. O

Appendix 4: Proof of Proposition 3

S'd*P(r.q+ 7))
BC(Q", SH
draqg+ )by,

T T8 tdrat ra) 1B + bs7,

We see that (8, S") = bgr, —

It can be easily seen that w(B,S') is a strictly decreasing function of g8 if dr,— >0,
and a strictly increasing function of 8 if #» — dr,>0, We obtain from above that
1= Bdr, — )/ dlrg+ r,) = d;/ bgs w(B,S) =0, Assuming now dr, > », and b, > bg.
Since 1—Adr, —r)/dra+r,) <1<b/bs= w(BS)<0 VBe [0,1], Cae 1
follows directly. The first part of Case 2 follows from the fact that 1— Kar, — r)/dra+ r) < 1 — &
(dr, — r) ] dlrg+ r,)< b/ bg= w(BS)<C0 VB e [8,1] To prove the second part of
Case 2, note that (i) @(B,S'), being a strictly decreasing function of B,(ii) w (&°,SY) > 0

implies that @ (8, S") is a strictly concave function of B V8 e [4°,1]. Hence. the minimum

exists on the boundary points. Cases 3 and 4 follow similarly. O

Appendix 5: Proof of Proposition 4

Proposition 4.a. Here, we show that (3 is disjointed from Cl, C2, and (4 Using a similar
argument, it is not difficult to show the remaining cases. It can be easily seen that the pairs
(Cl, 3) and (4, C3) are disjointed. To see that C2 and C3 are disjointed, we show that
both hold and derive a contradiction. b / by < S3  and b,(b, — by) = S2 implies b, = SI,

which contradicts &, ¢ SI.

Proposition 4.b. Follows directly from Proposition 3 and (10).
Proposition 4.c. Here, we partition the result into four cases based on whether the investment is
made to reduce S and 1/ 8. The sufficient conditions of the four necessary conditions given in

Proposition 4.c follow from their mutual exclusivity as verified in Proposition 4.a. For example,

consider C3 when 8°> A and S*' = S°. That is, only the reliability improvement investment
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is made in this case. For 8" to be optimal, & = A(SY Yy &, as given in (8). This then
implies bg< S4, For S" = S° to be optimal, SHBY > S® which results in b(b, — bg) = 2

after some algebra. The other cases follow similarly O
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