• Title/Summary/Keyword: Processor Array

Search Result 234, Processing Time 0.021 seconds

FPGA-DSP Based Implementation of Lane and Vehicle Detection (FPGA와 DSP를 이용한 실시간 차선 및 차량인식 시스템 구현)

  • Kim, Il-Ho;Kim, Gyeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.727-737
    • /
    • 2011
  • This paper presents an implementation scheme of real-time lane and vehicle detection system with FPGA and DSP. In this type of implementation, defining the functionality of each device in efficient manner is of crucial importance. The FPGA is in charge of extracting features from input image sequences in reduced form, and the features are provided to the DSP so that tracking lanes and vehicles are performed based on them. In addition, a way of seamless interconnection between those devices is presented. The experimental results show that the system is able to process at least 15 frames per second for video image sequences with size of $640{\times}480$.

Design on MPEC2 AAC Decoder

  • NOH, Jin Soo;Kang, Dongshik;RHEE, Kang Hyeon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1567-1570
    • /
    • 2002
  • This paper deals with FPGA(Field Programmable Gate Array) implementation of the AAC(Advanced Audio Coding) decoder. On modern computer culture, according to the high quality data is required in multimedia systems area such as CD, DAT(Digital Audio Tape) and modem. So, the technology of data compression far data transmission is necessity now. MPEG(Moving Picture Experts Group) would be a standard of those technology. MPEG-2 AAC is the availableness and ITU-R advanced coding scheme far high quality audio coding. This MPEG-2 AAC audio standard allows ITU-R 'indistinguishable' quality according to at data rates of 320 Kbit/sec for five full-bandwidth channel audio signals. The compression ratio is around a factor of 1.4 better compared to MPEG Layer-III, it gets the same quality at 70% of the titrate. In this paper, for a real time processing MPEG2 AAC decoding, it is implemented on FPGA chip. The architecture designed is composed of general DSP(Digital Signal Processor). And the Processor designed is coded using VHDL language. The verification is operated with the simulator of C language programmed and ECAD tool.

  • PDF

A Design of a Cellular Neural Network for the Real Image Processing (실영상처리를 위한 셀룰러 신경망 설계)

  • Kim Seung-Soo;Jeon Heung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.283-290
    • /
    • 2006
  • The cellular neural networks have the structure that consists of an array of the same cell which is a simple processing element, and each of the cells has local connectivity and space invariant template properties. So, it has a very suitable structure for the hardware implementation. But, it is impossible to have a one-to-one mapping between the CNN hardware processors and the pixels of the practical large image. In this paper, a $5{\times}5$ CNN hardware processor with pipeline input and output that can be applied to the time-multiplexing processing scheme, which processes the large image with a small CNN cell block, is designed. the operation of the implemented $5{\times}5$ CNN hardware processor is verified from the edge detection and the shadow detection experimentations.

Design of FPGA in Power Control Unit for Control Rod Control System (원자로 제어봉 구동장치 제어시스템용 전력제어기 FPGA 설계)

  • Lee, Jong-Moo;Shin, Jong-Ryeol;Kim, Choon-Kyung;Park, Min-Kook;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.563-566
    • /
    • 2003
  • We have designed the power control unit which belongs to the power cabinet and controls the power supplied to Control Rod Drive Mechanism(CRDM) as a digital system based on Digital Signal Processor(DSP). The power control unit dualized as the form of Master/Slave has had its increased reality. The Central Process Unit(CPU) board of a power control unit possesses two Digital Signal Processors(DSPs) of the control DSP for performing the tasks of power control and system monitoring and the communication of the Control DSP and the Communication DSP. To accomplish the functions requested in the power control unit effectively, we have installed Field Programmable Gate Arrays(FPGAS) on the CPU board and have FPGAs perform the memory mapping, the generation of each chip selection signal, the giving and receiving of the signals between the power controllers dualized, the fault detection and the generation of the firing signals.

  • PDF

Performance Characteristics of a 50-kHz Split-beam Data Acquisition and Processing System (50 kHz Split Beam 데이터 수록 및 처리 시스템의 성능특성)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.798-807
    • /
    • 2021
  • The directivity characteristics of acoustic transducers for conventional single-beam echo sounders considerably limit the detection of fish-size information in acoustic field surveys. To overcome this limitation, using the split-aperture technique to estimate the direction of arrival of single-echo signals from individual fish distributed within the sound beam represents the most reliable method for fish-size classification. For this purpose, we design and develop a split-beam data acquisition and processing system to obtain fish-size information in conjunction with a 50-kHz single-beam echo sounder. This split-beam data acquisition and processing system consists of a notebook PC, a field-programmable gate array board, an external single-transmitter module with a matching network, and four-channel receiver modules operating at a frequency of 50-kHz. The functionality of the developed split-beam data processor is tested and evaluated. Acoustic measurements in an experimental water tank showed that the developed data acquisition and processing system can be used as a fish-sizing echo sounder to estimate the size distribution of individual fish, although an external single-transmitter module with a matching network is required.

Performance Analysis of Implementation on Image Processing Algorithm for Multi-Access Memory System Including 16 Processing Elements (16개의 처리기를 가진 다중접근기억장치를 위한 영상처리 알고리즘의 구현에 대한 성능평가)

  • Lee, You-Jin;Kim, Jea-Hee;Park, Jong-Won
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.3
    • /
    • pp.8-14
    • /
    • 2012
  • Improving the speed of image processing is in great demand according to spread of high quality visual media or massive image applications such as 3D TV or movies, AR(Augmented reality). SIMD computer attached to a host computer can accelerate various image processing and massive data operations. MAMS is a multi-access memory system which is, along with multiple processing elements(PEs), adequate for establishing a high performance pipelined SIMD machine. MAMS supports simultaneous access to pq data elements within a horizontal, a vertical, or a block subarray with a constant interval in an arbitrary position in an $M{\times}N$ array of data elements, where the number of memory modules(MMs), m, is a prime number greater than pq. MAMS-PP4 is the first realization of the MAMS architecture, which consists of four PEs in a single chip and five MMs. This paper presents implementation of image processing algorithms and performance analysis for MAMS-PP16 which consists of 16 PEs with 17 MMs in an extension or the prior work, MAMS-PP4. The newly designed MAMS-PP16 has a 64 bit instruction format and application specific instruction set. The author develops a simulator of the MAMS-PP16 system, which implemented algorithms can be executed on. Performance analysis has done with this simulator executing implemented algorithms of processing images. The result of performance analysis verifies consistent response of MAMS-PP16 through the pyramid operation in image processing algorithms comparing with a Pentium-based serial processor. Executing the pyramid operation in MAMS-PP16 results in consistent response of processing time while randomly response time in a serial processor.

Implementation of Wired Sensor Network Interface Systems (유선 센서 네트워크 인터페이스 시스템 구현)

  • Kim, Dong-Hyeok;Keum, Min-Ha;Oh, Se-Moon;Lee, Sang-Hoon;Islam, Mohammad Rakibul;Kim, Jin-Sang;Cho, Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.31-38
    • /
    • 2008
  • This paper describes sensor network system implementation for the IEEE 1451.2 standard which guarantees compatibilities between various wired sensors. The proposed system consists of the Network Capable Application Processor(NCAP) in the IEEE 1451.0, the Transducer Independent Interface(TII) in the IEEE 1451.2, the Transducer Electronic Data Sheet(TEDS) and sensors. The research goal of this study is to minimize and optimize system complexity for IC design. The NCAP is implemented using C language in personal computer environment. TII is used in the parallel port between PC and an FPGA application board. Transducer is implemented using Verilog on the FPGA application board. We verified the proposed system architecture based on the standards.

DEVELOPMENT OF THE READOUT CONTROLLER FOR INFRARED ARRAY (적외선검출기 READOUT CONTROLLER 개발)

  • Cho, Seoung-Hyun;Jin, Ho;Nam, Uk-Won;Cha, Sang-Mok;Lee, Sung-Ho;Yuk, In-Soo;Park, Young-Sik;Pak, Soo-Jong;Han, Won-Yong;Kim, Sung-Soo
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2006
  • We have developed a control electronics system for an infrared detector array of KASINICS (KASI Near Infrared Camera System), which is a new ground-based instrument of the Korea Astronomy and Space science Institute (KASI). Equipped with a $512{\times}512$ InSb array (ALADDIN III Quadrant, manufactured by Raytheon) sensitive from 1 to $5{\mu}m$, KASINICS will be used at J, H, Ks, and L-bands. The controller consists of DSP(Digital Signal Processor), Bias, Clock, and Video boards which are installed on a single VME-bus backplane. TMS320C6713DSP, FPGA(Field Programmable Gate Array), and 384-MB SDRAM(Synchronous Dynamic Random Access Memory) are included in the DSP board. DSP board manages entire electronics system, generates digital clock patterns and communicates with a PC using USB 2.0 interface. The clock patterns are downloaded from a PC and stored on the FPGA. UART is used for the communication with peripherals. Video board has 4 channel ADC which converts video signal into 16-bit digital numbers. Two video boards are installed on the controller for ALADDIN array. The Bias board provides 16 dc bias voltages and the Clock board has 15 clock channels. We have also coded a DSP firmware and a test version of control software in C-language. The controller is flexible enough to operate a wide range of IR array and CCD. Operational tests of the controller have been successfully finished using a test ROIC (Read-Out Integrated Circuit).

Efficient SAD Processor for Motion Estimation of H.264 (H.264 움직임 추정을 위한 효율적인 SAD 프로세서)

  • Jang, Young-Beom;Oh, Se-Man;Kim, Bee-Chul;Yoo, Hyeon-Joong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.74-81
    • /
    • 2007
  • In this paper, an efficient SAD(Sum of Absolute Differences) processor structure for motion estimation of H.264 is proposed. SAD processors are commonly used both in full search methods for motion estimation and in fast search methods for motion estimation. Proposed structure consists of SAD calculator block, combinator block, and minimum value calculator block. Especially, proposed structure is simplified by using Distributed Arithmetic for addition operation. The Verilog-HDL(Hard Description Language) coding and FPGA(Field Programmable Gate Array) implementation results for the proposed structure show 39% and 32% gate count reduction in comparison with those of the conventional structure, respectively. Due to its efficient processing scheme, the proposed SAD processor structure can be widely used in size dominant H.264 chip.

A Novel Arithmetic Unit Over GF(2$^{m}$) for Reconfigurable Hardware Implementation of the Elliptic Curve Cryptographic Processor (타원곡선 암호프로세서의 재구성형 하드웨어 구현을 위한 GF(2$^{m}$)상의 새로운 연산기)

  • 김창훈;권순학;홍춘표;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.8
    • /
    • pp.453-464
    • /
    • 2004
  • In order to solve the well-known drawback of reduced flexibility that is associate with ASIC implementations, this paper proposes a novel arithmetic unit over GF(2$^{m}$ ) for field programmable gate arrays (FPGAs) implementations of elliptic curve cryptographic processor. The proposed arithmetic unit is based on the binary extended GCD algorithm and the MSB-first multiplication scheme, and designed as systolic architecture to remove global signals broadcasting. The proposed architecture can perform both division and multiplication in GF(2$^{m}$ ). In other word, when input data come in continuously, it produces division results at a rate of one per m clock cycles after an initial delay of 5m-2 in division mode and multiplication results at a rate of one per m clock cycles after an initial delay of 3m in multiplication mode respectively. Analysis shows that while previously proposed dividers have area complexity of Ο(m$^2$) or Ο(mㆍ(log$_2$$^{m}$ )), the Proposed architecture has area complexity of Ο(m), In addition, the proposed architecture has significantly less computational delay time compared with the divider which has area complexity of Ο(mㆍ(log$_2$$^{m}$ )). FPGA implementation results of the proposed arithmetic unit, in which Altera's EP2A70F1508C-7 was used as the target device, show that it ran at maximum 121MHz and utilized 52% of the chip area in GF(2$^{571}$ ). Therefore, when elliptic curve cryptographic processor is implemented on FPGAs, the proposed arithmetic unit is well suited for both division and multiplication circuit.