• Title/Summary/Keyword: Process Step

Search Result 5,389, Processing Time 0.032 seconds

Numerical Study on Sheet Metal Forming Analysis Using the One-Step Forming (One-Step Forming을 이용한 박판성형 해석에 관한 연구)

  • Ahn H. G.;Ko H. H.;Lee C. H.;Ahn B. I.;Moon W. S.;Jung D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.419-422
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well-designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented in this paper, the one-step approach by using a finite element inverse method will be introduced to predict the initial blank shape the developed program is applied to auto-body panel forming.

  • PDF

A Study on Powder Fire Extinguisher Design with RULA Technique Used (RULA 평가기법을 활용한 분말소화기 디자인 연구)

  • Kang, Chaewoo;Kim, Dueknam
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.117-123
    • /
    • 2017
  • This study was intended to find methods of fire extinguishing system designs that can improve the equipment's usability. In this study, the fire suppression experiment through fire extinguishers and the data drawn through the experiment were analyzed, and then the guideline for the improvement of designs was presented. The procedure is as follows. A fire suppression experiment with the use of fire extinguishers was done by 43 average adults. The whole process of the fire suppression was videotaped, and then captured major scenes were analyzed with the use of RULA, a human engineering measurement tool. The analyzed data were divided into 4 steps, and then the guideline for design improvement was presented. The summary of the study is as follows. Step 1, Fire extinguisher distance step. To reduce overload occurring at the process of holding fire extinguishers suddenly, wheels are attached to the body of extinguishers, or pedestals are installed. Step 2, Fire extinguisher transportation step. The length of hose is extended, or fire fighting water is sprayed far, so that overload of legs occurring at the process of travel can be reduced. In addition, the weight of fire extinguisher shouldn't be over 2 kg. Step 3, Safety pin removal stage. Safety pins should be applied with button type, so that excessive posture of lower limbs and excessive twisting of wrists won't happen during safety pin removal process. Besides, safety pins should be designed for easy identification and operation. Step 4, Fire extinguishing agent spraying step. To reduce overload occurring at sudden spraying of fire fighting water, pressure should be increased gradually until high pressure. With the above study results applied to existing fire extinguisher design, it may contribute to reducing any fire damage.

A Study on the development quality control by application of QFD and Stage-gate in defense system (QFD 및 Stage-gate 모델을 활용한 국방분야 개발단계 품질관리 방안 연구)

  • Jang, Bong Ki
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.3
    • /
    • pp.279-290
    • /
    • 2014
  • Purpose: The purpose of this study is to propose adoption of QFD and Stage-gate in order to analyze the quality of korea defense system. Methods: Drawing change data of initial production phase in korea defense system were anlayzed and a practical method was proposed. Results: The results of this study are as follows; Off line Quality Control should be introduced in development phase. Specially, in case of defense system, the best method is QFD(Quality Function Deployment) and Stage-gate process. At first, QFD 1 step defines product planning from VOC(Voice Of Customer), QFD 2 step specifies part planning from product planning, QFD 3 step defines process planning from part planning, QFD 4 step defines production planning from previous process planning. Secondly, Stage-gate process is adopted. This study is proposed 5 stage-gate in case of korea defense development. Gate 1 is located after SFR(System Function Review), Gate 2 is located after PDR(Preliminary Design Review), Gate 3 is located after CDR(Critical Design Review), Gate 4 is located after TRR(Test Readiness Review) and Gate 5 is located before specification documentation submission. Conclusion: Off line QC(Quality Control) in development phase is necessary prior to on line QC(Quality Control) in p roduction phase. For the purpose of off line quality control, QFD(Quality Function Deployment) and Stage-gate process can be adopted.

Process Analysis for the First Two Steps of the SCM453H Bolt with a Modified Molding Process (성형 공정을 수정한 SCM435H 볼트의 초기 2단계까지의 공정 해석)

  • Ahn, Kyo-Chul;Choi, Chui-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5366-5370
    • /
    • 2013
  • For a easier bolt molding, an extrusion process, the 2nd step of the molding process, was moved to step 4, and the bolt head section was exclusively molded in steps 2 and 3. As a result, the molding process was made easier thanks to the minor modification, and the contact pressure decreased in step 1 and increased in step 2 over its earlier intensity. Also, the maximum effective stress, effective strain, and molding force were all increased in both steps 1 and 2.

Effects of Cryogenic Treatment on Residual Stress and Tensile Properties for 6061 Al Alloy (극저온 열처리 공정이 6061 알루미늄 합금의 잔류응력과 인장특성에 미치는 영향)

  • Park, Kijung;Ko, Dea Hoon;Kim, Byung Min;Lim, Hak Jin;Lee, Jung Min;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • To develop a 6061 aluminum alloy with low residual stress and high tensile strength, a cryogenic treatment process was investigated. Compared to the conventional heat treatment process for precipitation hardening with artificial aging, the cryogenic treatment process has two additional steps. The first step is cryogenic quenching of the sample into liquid nitrogen, the second step is up-hill quenching of the sample into boiling water. The residual stress for the sample was measured by the $sin^2{\psi}$ method with X-ray diffraction. The 6061 aluminum alloy sample showed 67% relief in stress at the cryogenic treatment process with artificial aging at $175^{\circ}C$. From this study, it was found that the optimum cryogenic treatment process for a sample with low residual stress and high tensile strength is relatively low cooling speed in the cryogenic quenching step and a very high heating speed in the up-hill quenching step.

Simultaneous Extraction of Yttrium and Neodymium from Fly Ash by Two-Step Leaching Process with Aid of Ultrasonic Wave (2단계 침출 과정에서 발생되는 비산회로부터 초음파 활용하여 이트륨과 네오디뮴의 동시 추출)

  • Kim, Jae-Kwan;Park, Seok-Un
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.153-159
    • /
    • 2021
  • A two-step process for increasing the leaching efficiency of yttrium and neodymium from coal fly ash were investigated at solid loadings of 5.0 g ash ~1,000 g ash/l of 1.0 N~10.0 N H2SO4, temperature ranging from 30℃ to 90℃, ultrasonic leaching time of 1~10 hours, and ultrasonic power of 25~200 W. The yttrium and neodymium from coal fly ash were effectively leached into ion phases by step change of the first conventional dissolution at room temperature and then the second heating process with the aid of ultrasonic wave, and maximum leaching efficiency of yttrium and neodymium obtained were 66 % and 63 %, respectively. The activation energies for the leaching reaction of yttrium and neodymium at second heating process dependent on leaching time and temperature were derived to be 41.540 kJmol-1 and 507.92 kJmol-1, respectively. The optimum conditions for the maximum leaching of yttrium and neodymium were found to be the solid loading of 250 g ash/l of H2SO4, solvent concentration of 2.0 N H2SO4, and second step process of temperatures of 30℃ for 3 hours and then 90℃ for 4 hours with ultrasonic intensity of 100 W.

Enhancement of Dimple Formability in Sheet Metals by 2-Step Forming (2중 성형에 의한 금속판재 딤플의 성형성 향상)

  • Kim, Hasung;Kim, Minsoo;Lee, Hyungyil;Kim, Naksoo;Kim, Dongchoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.841-849
    • /
    • 2013
  • In this study, a 2-step stamping model with an additional 1st stamping tool is proposed to reduce stamping flaws in the curved parts of a dimple in a nuclear fuel spacer grid. First, the strains of curved part of dimple are characterized via a comparison with strain solutions in pure bending. A reference 2D finite element (FE) model of 1-step stamping is then established, and the corresponding maximum strain is obtained. By varying the values of design variables of the 1st stamping tool in the 2-step stamping model, FE solutions are obtained to express the strain as a function of process variables, which provides the optimum values of process variables. Finally, applying these optimum values to a 3D FE model, we demonstrate the enhanced formability of the proposed 2-step stamping model.

A Development of Expected Loss Control Chart Using Reflected Normal Loss Function (역정규 손실함수를 이용한 기대손실 관리도의 개발)

  • Kim, Dong-Hyuk;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.37-45
    • /
    • 2016
  • Control chart is representative tools of statistical process control (SPC). It is a graph that plotting the characteristic values from the process. It has two steps (or Phase). First step is a procedure for finding a process parameters. It is called Phase I. This step is to find the process parameters by using data obtained from in-controlled process. It is a step that the standard value was not determined. Another step is monitoring process by already known process parameters from Phase I. It is called Phase II. These control chart is the process quality characteristic value for management, which is plotted dot whether the existence within the control limit or not. But, this is not given information about the economic loss that occurs when a product characteristic value does not match the target value. In order to meet the customer needs, company not only consider stability of the process variation but also produce the product that is meet the target value. Taguchi's quadratic loss function is include information about economic loss that occurred by the mismatch the target value. However, Taguchi's quadratic loss function is very simple quadratic curve. It is difficult to realistically reflect the increased amount of loss that due to a deviation from the target value. Also, it can be well explained by only on condition that the normal process. Spiring proposed an alternative loss function that called reflected normal loss function (RNLF). In this paper, we design a new control chart for overcome these disadvantage by using the Spiring's RNLF. And we demonstrate effectiveness of new control chart by comparing its average run length (ARL) with ${\bar{x}}-R$ control chart and expected loss control chart (ELCC).

AEROACOUSTIC NOISE REDUCTION OF AN AUTOMOBILE USING ACOUSTIC HOLOGRAPHY (음향 홀로그래피를 이용한 자동차 바람소리 성능개발)

  • Kim, Moo-Sang;Nam, Kyoung-Uk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.259-262
    • /
    • 2006
  • This paper introduces the process of reducing the automobile wind noise by using acoustic holography. First, a microphone array scans a side or plane under an automible step-by-step. Second, a pressure on a source plane is calculated. Third process is to analyze how much individual sources contribute to interior noise. Fourth process is to control important noise sources determined by the contribution analysis. This paper deals with the entire process, theoretical and experimental problems.

  • PDF