• Title/Summary/Keyword: Process Control Charts

Search Result 229, Processing Time 0.025 seconds

EWMA Control Charts to Monitor Correlation Coefficients

  • Chang, Duk-Joon;Cho, Gyo-Young;Lee, Jae-Man
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.413-422
    • /
    • 1999
  • Multivariate EWMA control charts to simultaneously monitor correlation coefficients of correlated quality characteristics under multivariate normal process are proposed. Performances of the proposed charts are measured in terms of average run length(ARL). Numerical results show that smalle values for smoothing constant with accumulate-combine approach are preferred for detecting smalle shifts.

  • PDF

Economic Design of a Moving Average Control Chart with Multiple Assignable Causes when Two Failures Occur

  • Cben, Yun-Shiow;Yu, Fong-Jung
    • International Journal of Quality Innovation
    • /
    • v.2 no.1
    • /
    • pp.69-86
    • /
    • 2001
  • The economic design of control charts has been researched for over four decades since Duncan proposed the concept in 1956. Few studies, however, have focused attention on the economic design of a moving average (MA) control chart. An MA control chart is more effective than the Shewhart chart in detecting small process shifts [9]. This paper provides an economic model for determining the optimal parameters of an MA control chart with multiple assignable causes and two failures in the production process. These parameters consist of the sample size, the spread of the control limit and the sampling interval. A numerical example is shown and the sensitivity analysis shows that the magnitude of shift, rate of occurrence of assignable causes and increasing cost when the process is out of control have a more significant effect on the loss cost, meaning that one should more carefully estimate these values when conducting an economic analysis.

  • PDF

Economic Design of $\bar{X}$-Control Charts with Warning Limits under Weibull Failure Model (와이블 고장모형 하에서 경고한계를 고려한 $\bar{X}$ 관리도의 경제적 설계)

  • Jeong, Dong-Wook;Lee, Joo-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.2
    • /
    • pp.186-198
    • /
    • 2012
  • Since Duncan(1956) first proposed an economic design of $\bar{X}$-control charts, most of the succeeding works on economic design of control charts assumed the exponential failure model like Duncan. Hu(1984), however, assumed a more versatile Weibull failure model to develop an economic design of $\bar{X}$-control charts and Banerjee and Rahim(1988) further improved Hu's design by changing the assumption of fixed-length sampling intervals to variable-length ones. In this article we follow the approach of Banerjee and Rahim(1988) but include a pair of warning limits inside the control limits in order to search for a failure without stopping the process when the sample mean falls between warning and control limits. The computational results indicate that the proposed model gives a lower cost than Banerjee and Rahim's model unless the early failure probability of a Weibull distribution is relatively large. The reduction in cost is shown to become larger as the cost of production loss outweighs the cost of searches for a failure.

Multivariate control charts for monitoring correlation coefficients in dispersion matrix

  • Chang, Duk-Joon;Heo, Sun-Yeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.1037-1044
    • /
    • 2012
  • Multivariate control charts for effectively monitoring every component in the dispersion matrix of multivariate normal process are considered. Through the numerical results, we noticed that the multivariate control charts based on sample statistic $V_i$ by Hotelling or $W_i$ by Alt do not work effectively when the correlation coefficient components in dispersion matrix are increased. We propose a combined procedure monitoring every component of dispersion matrix, which operates simultaneously both control charts, a chart controlling variance components and a chart controlling correlation coefficients. Our numerical results show that the proposed combined procedure is efficient for detecting changes in both variances and correlation coefficients of dispersion matrix.

Residual-based Robust CUSUM Control Charts for Autocorrelated Processes (자기상관 공정 적용을 위한 잔차 기반 강건 누적합 관리도)

  • Lee, Hyun-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.52-61
    • /
    • 2012
  • The design method for cumulative sum (CUSUM) control charts, which can be robust to autoregressive moving average (ARMA) modeling errors, has not been frequently proposed so far. This is because the CUSUM statistic involves a maximum function, which is intractable in mathematical derivations, and thus any modification on the statistic can not be favorably made. We propose residual-based robust CUSUM control charts for monitoring autocorrelated processes. In order to incorporate the effects of ARMA modeling errors into the design method, we modify parameters (reference value and decision interval) of CUSUM control charts using the approximate expected variance of residuals generated in model uncertainty, rather than directly modify the form of the CUSUM statistic. The expected variance of residuals is derived using a second-order Taylor approximation and the general form is represented using the order of ARMA models with the sample size for ARMA modeling. Based on the Monte carlo simulation, we demonstrate that the proposed method can be effectively used for statistical process control (SPC) charts, which are robust to ARMA modeling errors.

Local T2 Control Charts for Process Control in Local Structure and Abnormal Distribution Data (지역적이고 비정규분포를 갖는 데이터의 공정관리를 위한 지역기반 T2관리도)

  • Kim, Jeong-Hun;Kim, Seoung-Bum
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.337-346
    • /
    • 2012
  • Purpose: A Control chart is one of the important statistical process control tools that can improve processes by reducing variability and defects. Methods: In the present study, we propose the local $T^2$ multivariate control chart that can efficiently detect abnormal observations by considering the local pattern of the in-control observations. Results: A simulation study has been conducted to examine the property of the proposed control chart and compare it with existing multivariate control charts. Conclusion: The results demonstrate the usefulness and effectiveness of the proposed control chart.

Multivariate EWMA Charts for Simultaneously Monitoring both Means and Variances

  • Cho, Gyo Young;Chang, Duk Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.715-723
    • /
    • 1997
  • Multivariate control statistics to simultaneously monitor both means and variances for several quality variables under multivariate normal process are proposed. Performances of the proposed multivariate charts are evaluated in terms of average run length(ARL). Multivariate Shewhart chart is also proposed to compare the performances of multivariate exponentially weighted moving average(EWMA) charts. A numerical comparison shows that multivariate EWMA charts are more efficient than multivariate Shewhart chart for small and moderate shifts and multivariate EWMA scheme based on accumulate-combine approach is more efficient than corresponding multivariate EWMA chart based on combine-accumulate approach.

  • PDF

Adjustment of Control Limits for Geometric Charts

  • Kim, Byung Jun;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.519-530
    • /
    • 2015
  • The geometric chart has proven more effective than Shewhart p or np charts to monitor the proportion nonconforming in high-quality processes. Implementing a geometric chart commonly requires the assumption that the in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice in high-quality process where the proportion of nonconforming items is very small. Thus, the error in the parameter estimation increases and may lead to deterioration in the performance of the control chart if a sample size is inadequate. We suggest adjusting the control limits in order to improve the performance when a sample size is insufficient to estimate the parameter. We propose a linear function for the adjustment constant, which is a function of the sample size, the number of nonconforming items in a sample, and the false alarm rate. We also compare the performance of the geometric charts without and with adjustment using the expected value of the average run length (ARL) and the standard deviation of the ARL (SDARL).

An Economic-Statistical Design of Moving Average Control Charts

  • Yu, Fong-Jung;Chin, Hsiang;Huang, Hsiao Wei
    • International Journal of Quality Innovation
    • /
    • v.7 no.3
    • /
    • pp.107-115
    • /
    • 2006
  • Control charts are important tools of statistical quality control. In 1956, Duncan first proposed the economic design of $\bar{x}-control$ charts to control normal process means and insure that the economic design control chart actually has a lower cost, compared with a Shewhart control chart. An moving average (MA) control chart is more effective than a Shewhart control chart in detecting small process shifts and is considered by some to be simpler to implement than the CUSUM. An economic design of MA control chart has also been proposed in 2005. The weaknesses to only the economic design are poor statistics because it dose not consider type I or type II errors and average time to signal when selecting design parameters for control chart. This paper provides a construction of an economic-statistical model to determine the optimal parameters of an MA control chart to improve economic design. A numerical example is employed to demonstrate the model's working and its sensitivity analysis is also provided.

Monitoring with VSR Charts and Change Point Estimation

  • Lee, Jae-Heon;Park, Chang-Soon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.191-196
    • /
    • 2005
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose a MLE of the process change point when control charts with the fixed sampling rate (FSR) scheme or the variable sampling rate (VSR) scheme monitor a process to detect changes in the process mean and/or variance of a normal quality variable.

  • PDF