• Title/Summary/Keyword: Problem life cycle

Search Result 308, Processing Time 0.025 seconds

Life Cycle Cost Analysis at Design Stage of Cable Stayed Bridges based on the Performance Degradation Models (성능저하모델에 기초한 사장교의 설계단계 생애주기비용 분석)

  • Koo, Bon Sung;Han, Sang Hoon;Cho, Choong Yuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2081-2091
    • /
    • 2013
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedently in civil engineering practice. Accordingly, in the 21st century, it is almost obvious that life-cycle cost together with value engineering will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, the most researches have only focused on the Deterministic or Probabilistic LCC analysis approach and general bridge at design stage. Thus, the goal of this study is to develop a practical and realistic methodology for the Life-Cycle Cost LCC-effective optimum decision-making based on reliability analysis of bridges at design stage. The proposed updated methodology is based on the concept of Life Cycle Performance(LCP) which is expressed as the sum of present value of expected direct/indirect maintenance costs with expected optimal maintenance scenario. The updated LCC methodology proposed in this study is applied to the optimum design problem of an actual highway bridge with Cable Stayed Bridges. In conclusion, based on the application of the proposed methods to an actual example bridge, it is demonstrated that a updated methodology for performance-based LCC analysis proposed in this thesis, shown applicably in practice as a efficient, practical, process LCC analysis method at design stage.

Life-Cycle Cost-Effective Optimum Design of Steel Bridges Considering Environmental Stressors (환경영향인자를 고려한 강교의 생애주기비용 최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.227-241
    • /
    • 2005
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology for steel bridges considering the long-term effect of environmental stressors such as corrosion and heavy truck traffics on bridge reliability. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost, and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure, which depends upon the prior and updated load and resistance histories, should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model, which takes into consideration corrosion initiation, corrosion rate, and repainting effect, are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40m+50m+40m=130m). Various sensitivity analyses are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the volume of truck traffic significantly influence the LCC-effective optimum design of steel bridges. Thus, these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges (생애 신뢰성에 기초한 강교의 LCC최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, CheolJun;Kim, Seong Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.75-89
    • /
    • 2006
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Ontology-Based Knowledge Framework for Product Life cycle Management (PLM 지원을 위한 온톨로지 기반 지식 프레임워크)

  • Lee Jae-Hyun;Suh Hyo-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.22-31
    • /
    • 2006
  • This paper introduces an approach to an ontology-based knowledge framework for product life cycle management (PLM). Participants in a product life cycle want to share comprehensive product knowledge without any ambiguity and heterogeneity. However, previous knowledge management approaches are limited in providing those aspects. Therefore, we suggest an ontology-based knowledge framework including knowledge maps, axioms and specific knowledge far domain. The bottom level, the axiom, specifies the semantics of concepts and relations of knowledge so that ambiguity of the semantics can be alleviated. The middle level is a product development knowledge map; it defines the concepts and the relations of the product domain common knowledge and guides engineers to process their engineering decisions. The middle level is then classified further into more detailed levels, such as generic product level, specific product level, product version level, and product item level for PLM. The top level is specialized knowledge fer a specific domain that gives the solution of a specific task or problem. It is classified into three knowledge types: expert knowledge, engineering function knowledge, and data-analysis-based knowledge. This proposed framework is based on ontology to accommodate a comprehensive range of unambiguous knowledge for PLM and is represented with first-order logic to maintain a uniform representation.

A study on Verification Process for LRT's Power Supply System Based on the ISO/IEC 15288 (국제표준 ISO/IEC 15288 기반의 경량전철 전력시스템 검증 프로세스에 관한 연구)

  • Choi, Won Chan;Bae, Joon Ho;Heo, Jae Hun;Lee, Sang Geun;Han, Seok Youn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 2013
  • The object of this study is to define systematically for outputs of Verification Process among the system life cycle process based on ISO/IEC 15288 for power supply system, which is one of the importance sub-systems to configure the LRT system. Furthermore, to prevent various problem in advance that can occur in the Transition LRT's power supply to be completed Integration. For this purpose, traceability of verification requirement and outputs. should be managed to use verification for system requirement and data processing tool. by system engineering techniques of system life cycle process based on ISO/IEC 15288 to LRT system.

Optimal Preventive Maintenance Period in Complex Systems in Considering Components Reliability Characteristic (하부 구성품의 신뢰도 특성을 고려한 복합 시스템의 최적 예방정비 주기 산출)

  • Lee, Youn-Ho;Lee, Ik-Do;Lee, Dong-Woo;Sohn, Ki-Hong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.390-399
    • /
    • 2011
  • Generally the life-cycle cost of complex systems composed of several sub systems or equipments such as train, aircraft weapon systems is spent much more during operation and maintenance phase than development phase. The maintenance cost for maintaining the availability and extending the life span of systems comprise a large proportion of systems operation cost. The cycle of preventive maintenance affects operation and maintenance cost a lot. In this study we introduce a way minimizing life-cycle cost of systems by calculating more reliable preventive maintenance period than the results of previous study using systems reliability data considered the reliability and failure effect ratio of sub-systems or components. We can solve the preventive maintenance period problem known as NP-Hard as quick as possible by using modified genetic algorithm than using other models introduced in previous study.

Stochastic analysis for Real Rate Interest of Building Life Cycle Cost(LCC) with Monte-Carlo Simulation (몬테카를로 시뮬레이션을 이용한 건축물 생애주기비용(LCC)의 실질할인율에 대한 확률론적 분석)

  • Kim, Bum-Sic;Jung, Young-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.161-163
    • /
    • 2012
  • Recently on Value Engineering(VE) and Life Cycle Cost(LCC) social interests is increasing. The government Turn Key, BTL projects and public works projects, such as VE and LCC Analysis on the value and economic analysis is mandatory. And accordingly the VE and LCC analysis is underway for the various studies. However, there is a problem existing in the LCC analysis. Worth the cost varies according to the flow of time. However, the real interest rate during the LCC analysis of buildings in calculation time for interest rates and inflation are not considering the value of the flow. In other words, a few years using the average value of the deterministic analysis method has been adopted. These costs for the definitive analysis of the cost of an uncertain future, unforeseen changes resulting hazardous value. In this study of the last 15 years interest rates and inflation targeting by using Monte-Carlo Simulation is to perform probabilistic analysis. This potential to overcome uncertainties of the cost of building a more scientific and LCC Estimation of the probability value of the real interest rate is presented.

  • PDF

A Study on DMSMS Management for Weapon systems (무기체계 특성을 고려한 부품단종 관리방안에 대한 연구)

  • Park, Kyoung-Deok;Rhee, Jong-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5866-5871
    • /
    • 2013
  • DMSMS(Diminishing Manufacturing Sources and Material Shortage) of weapon systems is caused by required increase in system life cycle and reduction of military electronic parts market share. This problem causes serious problems about Combat readiness and Life-cycle cost. In this paper, we review the method for managing the DMSMS and then suggest effective alternatives to reduce the risk of DMSMS for weapon systems, such as systematic DMSMS management system and quantitative design refresh planning considering the DMSMS.

Predictions of Fatigue Life of Copper Alloy for Regenerative Cooling Channel of Thrust Chamber (연소기 재생냉각 채널용 구리합금의 피로수명예측)

  • Lee, Keumoh;Ryu, Chulsung;Heo, Seongchan;Choi, Hwanseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.73-82
    • /
    • 2017
  • Low-cycle thermal fatigue problem resulting from multiple use of a liquid rocket engine has to be considered for the development of a reusable launch vehicle. In this study, life prediction equations suggested by previous researchers were compared as applied to various copper alloy cases to predict fatigue lives from tensile test data. The present study has revealed that among the presently considered life prediction methods, universal slopes method provides the best life prediction result for the copper alloys, and the modified Mitchell's method provides the best life prediction result for oxygen free high conductivity (OFHC) copper.

The Study on the formal durability of consumer products - focused on the cases of long-selling products (제품조형의 내구적 속성에 관한 연구 -장기간 판매 제품의 사례를 중심으로)

  • 조영식;조민정
    • Archives of design research
    • /
    • v.12 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • The whole crisis of human being derived from environmental pollution has changed the human -centered paradigm into the ecological paradigm based on the harmony of human and nature, which have made it inevitable for designers to participate in the environmental problem-solving. In the line of this sense, it is necessary for designers to recognize the social and ethical responsibility for environmental pollution and to change into the designing for environment, not for sale itself. In accord with the context above, the purpose of this study is to suggest some clues for resolving environmental problems with the analysis of design for long-selling product, as we call, product durability analysis. That is, this study is under some assumptions that designing durable product and durable product itself are able to extend a product life cycle, delay a product disusing, reduce a rash development competition for new product among companies, mitigate consumption-oriented attitude of consumers, eliminate a waste of resources, and go far toward the environmental problem solving.

  • PDF