• Title/Summary/Keyword: Problem Domain

Search Result 1,818, Processing Time 0.034 seconds

Time-Domain Analysis on Motion Response of Adjacent Multiple-Bodies in Waves (파랑 중 근접한 다중 물체의 운동응답에 대한 시간영역 해석)

  • Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • This study considers the motion response of multiple adjacent floating bodies in waves. As a method of solution, a three-dimensional Rankine panel method is adopted in time domain. For the validation of the developed numerical method, the motions of two adjacent Series 60 hulls and ship-barge model are estimated. The computational results are compared with other numerical and experimental analyses, showing favorable agreement.

Partial Pole Assignment via Constant Gain Feedback in Two Classes of Frequency-domain Models

  • Wang, Guo-Sheng;Yang, Guo-Zhen;Duan, Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.111-116
    • /
    • 2007
  • The design problem of partial pole assignment (PPA) in two classes of frequency-domain MIMO models by constant gain feedback is investigated in this paper. Its aim is to design a constant gain feedback which changes only a subset of the open-loop eigenvalues, while the rest of them are kept unchanged in the closed-loop system. A near general parametric expression for the feedback gain matrix in term of a set of design parameter vectors and the set of the closed-loop poles, and a simple parametric approach for solving the proposed problem are presented. The set of poles do not need to be previously prescribed, and can be set undetermined and treated together with the set of parametric vectors as degrees of design freedom provided by the approach. An illustrative example shows that the proposed parametric method is simple and effective.

Development ontology model for partnership in supply chain networks (Supply Chain 파트너쉽에 관한 Ontology 모델 개발)

  • Lee, Hae-Kyeong;Kim, Tai-Oun
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.9-19
    • /
    • 2009
  • SCM은 시장의 변화를 신속하고 파악하고 IT 기술을 활용해 정보를 공유함으로써 변화에 보다 적극적으로 대처해 전체 Supply Chain의 이익을 높이고자 하는 전략적 사고라고 할 수 있다. SCM에서 파트너 선정은 장기적이고 전략적인 관점에서 이루어져야 하는 지식 집약적인 업무 Process이다. 본 연구는 SCM에서 파트너 선정의 절차를 Task Modeling을 통해 재사용 가능한 Knowledge-base를 개발하는 것이다. 이를 위해, 첫 번째로 전문가의 문제 해결 과정을 분석해 문제 해결 과정을 대상으로 한 Problem-Solving Ontology(Task Ontology)를 도출하고, 두 번째로 문제 해결 과정에 필요한 Domain Knowledge를 추출해 파트너 선정 문제 해결에 필요한 Domain Ontology를 개발한다. 끝으로 Problem-Solving Ontology와 Domain Ontology를 Protege를 통해 구현하고자 한다.

  • PDF

The Hough Transform - A Radon-Like Transform

  • Thue Nguyen Dinh;Due Duong Anh
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.274-275
    • /
    • 2004
  • The Hough transform has been used as a tool for line detection. The main idea of the Hough transform is to transform each pixel in the image individually into the parameter domain. In this way, the Hough transform converts a difficult global detection problem in the image domain into a more easily solved local peak detection problem in the parameter domain. In this paper, we show that the discrete Hough transform is identical to the discrete Radon transform. Thus, we can use the generalized Radon transform to handle more general parameterized curve types.

  • PDF

Optimal Design of Dielectric shape and Topology using Smooth Boundary Topology Optimization Method (부드러운 경계 위상 최적설계기법을 이용한 유전체 형상 및 위상 최적설계)

  • Jeung, Gi-Woo;Choi, Nak-Sun;Kim, Nam-Kyung;Kim, Dong-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1936-1941
    • /
    • 2009
  • This paper deals with a new methodology for topology optimization in which the topology of the design domain may change during the shape optimization process. To achieve this, the concept of the topological gradient is introduced to compute the sensitivity of an objective function when a small hole is drilled in the domain. Based on shape and topological sensitivity values, the shape and topology of the design domain may be simultaneously changed during design iterations if necessary. To verify the advantages and also to facilitate understanding of the method itself, two electrostatic design problems have been tested by using 2D finite element analysis: the first is the inverse problem of a simple dielectric model and the second is the rotor design of a MEMS actuator.

Stress analysis with arbitrary body force by triple-reciprocity BEM

  • Ochiai, Y.;Kobayashi, T.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.393-404
    • /
    • 2000
  • Linear stress analysis without body force can be easily solved by means of the boundary element method. Some cases of linear stress analysis with body force can also be solved without a domain integral. However, domain integrals are generally necessary to solve the linear stress problem with arbitrary body forces. This paper shows that the linear stress problem with arbitrary body forces can be solved approximately without a domain integral by the triple-reciprocity boundary element method. In this method, the distribution of arbitrary body forces can be interpolated by the integral equation. A new computer program is developed and applied to several problems.

Meshless equilibrium on line method (MELM) for linear elasticity

  • Sadeghirad, A.;Mohammadi, S.;Kani, I. Mahmoudzadeh
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.511-533
    • /
    • 2010
  • As a truly meshfree method, meshless equilibrium on line method (MELM), for 2D elasticity problems is presented. In MELM, the problem domain is represented by a set of distributed nodes, and equilibrium is satisfied on lines for any node within this domain. In contrary to conventional meshfree methods, test domains are lines in this method, and all integrals can be easily evaluated over straight lines along x and y directions. Proposed weak formulation has the same concept as the equilibrium on line method which was previously used by the authors for enforcement of the Neumann boundary conditions in the strong-form meshless methods. In this paper, the idea of the equilibrium on line method is developed to use as the weak forms of the governing equations at inner nodes of the problem domain. The moving least squares (MLS) approximation is used to interpolate solution variables in this paper. Numerical studies have shown that this method is simple to implement, while leading to accurate results.

A NOTE ON BOUNDARY BLOW-UP PROBLEM OF 𝚫u = up

  • Kim, Seick
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.245-251
    • /
    • 2019
  • Assume that ${\Omega}$ is a bounded domain in ${\mathbb{R}}^n$ with $n{\geq}2$. We study positive solutions to the problem, ${\Delta}u=u^p$ in ${\Omega}$, $u(x){\rightarrow}{\infty}$ as $x{\rightarrow}{\partial}{\Omega}$, where p > 1. Such solutions are called boundary blow-up solutions of ${\Delta}u=u^p$. We show that a boundary blow-up solution exists in any bounded domain if 1 < p < ${\frac{n}{n-2}}$. In particular, when n = 2, there exists a boundary blow-up solution to ${\Delta}u=u^p$ for all $p{\in}(1,{\infty})$. We also prove the uniqueness under the additional assumption that the domain satisfies the condition ${\partial}{\Omega}={\partial}{\bar{\Omega}}$.

Nonlinear free vibration analysis of moderately thick viscoelastic plates with various geometrical properties

  • Nasrin Jafari;Mojtaba Azhari
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.293-303
    • /
    • 2023
  • In this paper, geometrically nonlinear free vibration analysis of Mindlin viscoelastic plates with various geometrical and material properties is studied based on the Von-Karman assumptions. A novel solution is proposed in which the nonlinear frequencies of time-dependent plates are predicted according to the nonlinear frequencies of plates not dependent on time. This method greatly reduces the cost of calculations. The viscoelastic properties obey the Boltzmann integral law with constant bulk modulus. The SHPC meshfree method is employed for spatial discretization. The Laplace transformation is used to convert equations from the time domain to the Laplace domain and vice versa. Solving the nonlinear complex eigenvalue problem in the Laplace-Carson domain numerically, the nonlinear frequencies, the nonlinear viscous damping frequencies, and the nonlinear damping ratios are verified and calculated for rectangular, skew, trapezoidal and circular plates with different boundary conditions and different material properties.

Time-Domain Solutions of the VV, HV, VH Problems at the Surface of a Normally Uniaxial Half-Space Dielectric (수직 단축성을 갖는 반공간 유전체 표면에서 VV, HV, VH 문제의 시간영역 해)

  • Lihh Won-Seok;Nam Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1246-1254
    • /
    • 2005
  • Theoretical investigation is made on the electromagnetic fields generated by an impulsive point current source, fur the VV, HV, and VH problems at the interface between an isotropic upper half-space medium and a normally uniaxial lower half-space medium. The electric fields of these problems are associated only with the extraordinary-wave components in the Fourier-Laplace domain. Applying the Cagniard-de Hoop method to each problem, the time-domain solutions of the wave fields are obtained. The fields of the VV case can be expressed in explicit(integral-free) forms. The fields of the HV and VH cases are not integral-free, but the major singularities implicit in the integral solutions can be analytically extracted. The interfacial far fields in the frequency domain are determined by the singularities in the time domain.