• Title/Summary/Keyword: Probe force

Search Result 325, Processing Time 0.033 seconds

Protein Binding Characteristics of Brazilin and Hematoxylin

  • Moon, Chang-Kiu;Lee, Jong-Hwoa;Ha, Bae-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.2
    • /
    • pp.77-82
    • /
    • 1992
  • In order to investigate the protein binding characteristics of braD6n and hematoxy6n to bovine semm albumin (BSA), the fluorescence probe method was adopted. Brazilin and hematoxy6n showed strong binding affinity for BSA. It was also confirmed that hematoxy6n was bound to BSA stronger than braDlin. The association constants were decreased by the elevation of concentrations of brazilin and hematoxylin. It might be due to the complex formation of the probe and both compounds or the interaction between the probe-protein complex and both compounds. The bindings between both compounds and BSA were dependent on pH and ionic strength. It seems that electrostatic force as weD as hydrophobic force is involved in the binding of braD6n and bematoxylin to BSA.

  • PDF

Simultaneous Detection of Biomolecular Interactions and Surface Topography Using Photonic Force Microscopy

  • Heo, Seung-Jin;Kim, Gi-Beom;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.402.1-402.1
    • /
    • 2014
  • Photonic force microscopy (PFM) is an optical tweezers-based scanning probe microscopy, which measures the forces in the range of fN to pN. The low stiffness leads proper to measure single molecular interaction. We introduce a novel photonic force microscopy to stably map various chemical properties as well as topographic information, utilizing weak molecular bond between probe and object's surface. First, we installed stable optical tweezers instrument, where an IR laser with 1064 nm wavelength was used as trapping source to reduce damage to biological sample. To manipulate trapped material, electric driven two-axis mirrors were used for x, y directional probe scanning and a piezo stage for z directional probe scanning. For resolution test, probe scans with vertical direction repeatedly at the same lateral position, where the vertical resolution is ~25 nm. To obtain the topography of surface which is etched glass, trapped bead scans 3-dimensionally and measures the contact position in each cycle. To acquire the chemical mapping, we design the DNA oligonucleotide pairs combining as a zipping structure, where one is attached at the surface of bead and other is arranged on surface. We measured the rupture force of molecular bonding to investigate chemical properties on the surface with various loading rate. We expect this system can realize a high-resolution multi-functional imaging technique able to acquire topographic map of objects and to distinguish difference of chemical properties between these objects simultaneously.

  • PDF

나노트라이볼로지 분석을 이용한 W-N 나노박막의 표면 물성 연구

  • Kim, Su-In;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.133-133
    • /
    • 2011
  • 최근 연구중인 소자들의 크기가 점차 나노 크기를 가짐에 따라서 나노 영역에 대한 물성 분석 연구의 필요성이 대두되고 있다. 특히 나노 크기를 가지는 소자에 대한 기계적 특성은 기존의 마이크로 이상의 소자와는 다른 특성을 보이는 것으로 보고되고 있다. 그러나 이러한 나노 크기에 대한 연구에서 대부분을 차지하는 분광학적, 전기적 방법은 측정 영역 한계와 일정 깊이에 대한 평균적인 정보를 제공하게 된다. 본 연구에서는 나노트라이볼로지 분석의 대표적인 Nano-indenter와 Scanning Probe Microscopy(SPM) 분석을 통하여 박막의 수 혹은 수십 나노 미만의 영역과 깊이에 대한 기계적 물성을 연구하였고, 이를 기반으로 수십 나노 이하 두께를 가지는 W-N 확산박지막에 대한 연구를 실시하였다. 연구 결과에 의하면, 박막의 표면 hardness는 박막의 두께가 감소함에 따라서 4.19 GPa에서 3.51 GPa로 감소하였고, Weibull modulus를 통한 박막의 균일도는 2.75에서 7.91로 급격히 증가하는 현상을 나타내었다. 또한 SPM의 Kelvin probe force microscopy (KPFM), Force modulation microscopy (FMM) mode를 활용하여 표면에서의 Nitrogen 흡착에 의한 영상, 전기적 및 표면 탄성에 대한 연구를 실시하였다.

  • PDF

Elastic Buffer Layer Coupled Micro Probe (탄성 버퍼층 결합형 마이크로 프로브)

  • Choi, Ju Chan;Choi, Young Chan;Jung, Dong Geon;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.374-378
    • /
    • 2013
  • In this paper, a new structure of probe unit is designed and fabricated with PDMS, which is well-known elastic material, as a buffer layer for increasing overdrive force and mechanical strength. In general, PDMS is widely used as actuation material due to its elasticity and compatibility of fabrication process. In this work, PDMS layer is chosen for mechanical elasticity of the proposed probe unit. We achieved the high overdrive force by placing PDMS buffer layer under the silicon based cantilever due to its elasticity. Moreover, the relation between prove length and overdrive force was measured by experiment in this work. Therefore, the various specifications of the micro prove unit can be designed by using the results of this work.

The Measurment Methods of the Textural Characteristics of Fermented vegetables (침채류의 조직감 측정방법)

  • 이희섭
    • Korean journal of food and cookery science
    • /
    • v.11 no.1
    • /
    • pp.83-91
    • /
    • 1995
  • For the accurate interpretation and objective measurement of textural characteristics of fermented vegetables, first of all, the studies on the microstructure and chemical compositions of vegetable cell, and the changes in the textural properties of vegetables during salting, blanching and fermentation should be carried out. And the mechanical textural parameters were needed to compare with and analyze in relation to the sensory parameters. In this review, the thypical force-distance curves of fermented vegetables were obtained from the compression, cutting and puncture test. And it was showed that the compression force was a more effective textural parameter to express the hardness of fermented vegetables, and the sensory chewiness and toughness were related to the changes in cutting force. In the puncture test, the puncture force was related to the hardness and varied with the size and form of puncture probe; the changes in puncture force by small probe could express the decrease in hardness and crispness, whereas those by large probe could represent the changes in toughness. And the brittleness and crispness could be measured by the break point and the numbers of peak obtained from the force-distance curves.

  • PDF

Development of a scratch tester using a two-component force sensor (2축 힘센서를 이용한 스크레치 테스트 개발)

  • 김종호;박연규;이호영;박강식;오희근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1018-1021
    • /
    • 2003
  • A scratch tester was developed to evaluate the adhesive strength at interface between thin film and substrate(silicon wafer). Under force control, the scratch tester can measure the normal and the horizontal forces simultaneously as the probe tip of the equipment approaches to the interface between thin film and substrate of wafer. The capacity of each component of force sensor is 0.1 N ∼ 100 N. In addition, the tester can detect the signal of elastic wave from AE sensor(frequency range of 900 kHz) attached to the probe tip and evaluate the bonding strength of interface. Using the developed scratch tester. the feasibility test was performed to evaluate the adhesive strength of semiconductor wafer.

  • PDF

A New Design of AFM Probe for Nanotribological Characterizations Measurement of Human Hair (모발의 나노 트라이볼러지 특성해명을 위한 원자현미경(Atomic Force Microscopy) 프로브의 개발)

  • Kweon, Hyun Kyu;Gao, Yan Wei
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • People are always pursuing the aesthetic feeling relentlessly. But some people have such problems with their hairs like alopecia, cancer chemotherapy, burns, and scalp injury. So the synthetic hair has played a very important role to make up for these deficiencies. But long term use can lead to adverse reactions or uncomfortable feeling. This is primarily caused by its properties differ with human hair. In particular, nanotribological characterizations (roughness, friction force and adhesive force) of synthetic hair surface are dissatisfy with the needs of normal hairs. This paper presents the experiments on nanotribological characterizations measurements of human hairs (coloring hair, permed hair and common hair) in shampooing condition or without shampooing condition. Using atomic force microscopy (AFM) to find out a range of synthetic hair nanotribological characterizations which can correspond with natural hair. The measurements of nanotribological characterizations focus on surface roughness, friction force and adhesive force, and a new design of AFM probe was used for measuring the nanotribological characterizations.

An Experimental Study on the Effect of Surface Roughness on Nanoscale Adhesion (표면 거칠기가 나노 응착력에 미치는 영향에 관한 실험적 연구)

  • Yang Seung Ho
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Effect of Surface roughness on nanoscale adhesion was studied experimentally by using colloidal probe technique. Glass micro balls having the radius of $3.3\~17.4{\mu}m$ were glued at the end of AFM cantilevers to prepare colloidal probes. Adhesion force between the colloidal probe and Si-wafer was measured using pull-off force measuring method. Results showed that the measured adhesion forces are not the function of the radius of the glued balls because the ball surfaces are rough. It is also found that roughness parameters such as $R_a,\;R_q\;and\;R_{max}$ do not have important role on nanoscale adhesion. In order to find the effect of surface roughness on nanoscale adhesion, the bearing areas were extracted from the measured topography of glued balls. After normalizing the measured adhesion force with the bearing area, it was found that the normalized adhesion force kept constant as function of the radius of glued ball.

Modelling and Measurements of Normal and Lateral Stiffness for Atomic Force Microscopy

  • Choi, Jinnil
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.240-247
    • /
    • 2014
  • Modelling and measurements of normal and lateral stiffness for atomic force microscopy (AFM) are presented in this work. Important issues, such as element discretisation, stiffness calibration, and deflection angle are explored using the finite element (FE) model. Elements with various dimension ratios are investigated and comparisons with several mathematical models are reported to verify the accuracy of the model. Investigation of the deflection angle of a cantilever is also shown. Moreover, AFM force measurement experiments with conical and colloid probe tips are demonstrated. The relationships between force and displacement, required for stiffness measurement, in normal and lateral directions are acquired for the conical tip and the limitations of the colloid probe tip are highlighted.

Lateral Force Calibration in Liquid Environment using Multiple Pivot Loading (Multiple Pivot loading 방법을 이용한 액체 환경에서의 수평방향 힘 교정)

  • Kim, Lyu-Woon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Quantifying the nanoscale force between the atomic force microscopy (AFM) probe of a force-sensing cantilever and the sample is one of the challenges faced by AFM researchers. The normal force calibration is straightforward; however, the lateral force is complicated due to the twisting motion of the cantilever. Force measurement in a liquid environment is often needed for biological applications; however, calibrating the force of the AFM probes for those applications is more difficult owing to the limitations of conventional calibration methods. In this work, an accurate nondestructive lateral force calibration method using multiple pivot loading was proposed for liquid environment. The torque sensitivity at the location of the integrated probe was extrapolated based on accurately measured torque sensitivities across the cantilever width along a few cantilever lengths. The uncertainty of the torque sensitivity at the location of the integrated tip was about 13%, which is significantly smaller than those for other calibration methods in a liquid environment.