• Title/Summary/Keyword: Probability of performance failure

Search Result 236, Processing Time 0.025 seconds

Development of FEMAXI-ATF for analyzing PCMI behavior of SiC cladded fuel under power ramp conditions

  • Yoshihiro Kubo;Akifumi Yamaji
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.846-854
    • /
    • 2024
  • FEMAXI-ATF is being developed for fuel performance modeling of SiC cladded UO2 fuel with focuses on modeling pellet-cladding mechanical interactions (PCMI). The code considers probability distributions of mechanical strengths of monolithic SiC (mSiC) and SiC fiber reinforced SiC matrix composite (SiC/SiC), while it models pseudo-ductility of SiC/SiC and propagation of cladding failures across the wall thickness direction in deterministic manner without explicitly modeling cracks based on finite element method in one-dimensional geometry. Some hypothetical BWR power ramp conditions were used to test sensitivities of different model parameters on the analyzed PCMI behavior. The results showed that propagation of the cladding failure could be modeled by appropriately reducing modulus of elasticities of the failed wall element, so that the mechanical load of the failed element could be re-distributed to other intact elements. The probability threshold for determination of the wall element failure did not have large influence on the predicted power at failure when the threshold was varied between 25 % and 75 %. The current study is still limited with respect to mechanistic modeling of SiC failure as it only models the propagation of the cladding wall element failure across the homogeneous continuum wall without considering generations and propagations of cracks.

Performance-Based Reliability Measures for Gracely Degrading Systems: the Concept (성능이 서서히 저하되는 시스템의 신뢰도 척도)

  • Kim, Yon-Soo;Park, Sang-Min
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.227-232
    • /
    • 1994
  • In the performance domain, physical performance is a measure that represents some degree of system, subsystem, component or device success in a continuous sense, as opposed to a classical binomial sense (success or failure). If applicable sensing and monitoring means exist, physical performance can be observed over time, along with explanatory variables or covariables. Performance-based reliability represents the probability that performance will remain satisfactory over a finite period of time or usage cycles in the future when a performance critical limit (which represents an appropriate definition of failure in terms of performance) is set at a fixed level, based on application requirements. In the case of inadequate knowledge of the failure mechanics, this physical based empirical modeling concept along with performance degradation knowledge can serve as an important analysis tool in reliability work in product and process improvement.

  • PDF

Statistical Life Prediction of Corroded Pipeline Using Bayesian Inference (베이지안 추론법을 이용한 부식된 배관의 통계적 수명예측)

  • Noh, Yoojeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2401-2406
    • /
    • 2015
  • Pipelines are used by large heavy industries to deliver various types of fluids. Since this is important to maintain the performance of large systems, it is necessary to accurately predict remaining life of the corroded pipeline. However, predicting the remaining life is difficult due to uncertainties in the associated variables, such as geometries, material properties, corrosion rate, etc. In this paper, a statistical method for predicting corrosion remaining life is proposed using Bayesian inference. To accomplish this, pipeline failure probability was calculated using prior information about pipeline failure pressure according to elapsed time, and the given experimental data based on Bayes' rule. The corrosion remaining life was calculated as the elapsed time with 10 % failure probability. Using 10 and 50 samples generated from random variables affecting the corrosion of the pipe, the pipeline failure probability was estimated, after which the estimated remaining useful life was compared with the assumed true remaining useful life.

Application of FMECA with Stochastic Approach to Reliability-Centered Maintenance of Electric Power Plants in Korean Power Systems (RCM 수립을 위해 발전설비의 고장확률을 고려한 확률론적 FMECA 평가 기법)

  • Joo, Jae-Myung;Lee, Seung-Hyuk;Kim, Jin-O;Lee, Hyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.196-197
    • /
    • 2006
  • Preventive maintenance can avail the generation utilities to reduce cost and gain more profit in a competitive supply-side power market. So, it is necessary to perform reliability analysis on the systems in which reliability is essential. In this paper, RCM (Reliability -Centered Maintenance) analytical method is adopted using real historical failure data in Korean power plants. Therefore, the reliability -based Probability model for predicting the failures of components in the power plant is also established, and application to FMECA(Failure Mode Effects and Critical Analysis) consideration of failure probability, Based on the weighting ranking of generating equipments which status to be probability estimation by FMECA. The FMECA is an engineering analysis and a core activity performed by reliability engineers to review the effects of probable failure modes of generating equipments and assemblies of the power system on system performance. The results of this paper show that application of FMECA with stochastic approach to the preventive maintenance can efficiently avail decreasing the cost on maintenance and hence improve the total benefit.

  • PDF

Application of Chernoff bound to passive system reliability evaluation for probabilistic safety assessment of nuclear power plants

  • So, Eunseo;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2915-2923
    • /
    • 2022
  • There is an increasing interest in passive safety systems to minimize the need for operator intervention or external power sources in nuclear power plants. Because a passive system has a weak driving force, there is greater uncertainty in the performance compared with an active system. In previous studies, several methods have been suggested to evaluate passive system reliability, and many of them estimated the failure probability using thermal-hydraulic analyses and the Monte Carlo method. However, if the functional failure of a passive system is rare, it is difficult to estimate the failure probability using conventional methods owing to their high computational time. In this paper, a procedure for the application of the Chernoff bound to the evaluation of passive system reliability is proposed. A feasibility study of the procedure was conducted on a passive decay heat removal system of a micro modular reactor in its conceptual design phase, and it was demonstrated that the passive system reliability can be evaluated without performing a large number of thermal-hydraulic analyses or Monte Carlo simulations when the system has a small failure probability. Accordingly, the advantages and constraints of applying the Chernoff bound for passive system reliability evaluation are discussed in this paper.

Performance estimation for Software Reliability Growth Model that Use Plot of Failure Data (고장 데이터의 플롯을 이용한 소프트웨어 신뢰도 성장 모델의 성능평가)

  • Jung, Hye-Jung;Yang, Hae-Sool;Park, In-Soo
    • The KIPS Transactions:PartD
    • /
    • v.10D no.5
    • /
    • pp.829-836
    • /
    • 2003
  • Software Reliability Growth Model that have been studied variously. But measurement of correct parameter of this model is not easy. Specially, estimation of correct model about failure data must be establish and estimation of parameter can consist exactly. To get correct testing, we calculate the normal score and describe the normal probability plot. Use the normal probability plot, we estimate the distribution for failure data. In this paper, we estimate the software reliability growth model for through the normal probability plot. In this research, we applies software reliability growth model through distribution characteristics of failure data. If we see plot, we determine the software reliability growth model, we can make sure superior in model's performance estimation.

Seismic performance-based optimal design approach for structures equipped with SATMDs

  • Mohebbi, Mohtasham;Bakhshinezhad, Sina
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.95-107
    • /
    • 2022
  • This paper introduces a novel, rigorous, and efficient probabilistic methodology for the performance-based optimal design (PBOD) of semi-active tuned mass damper (SATMD) for seismically excited nonlinear structures. The proposed methodology is consistent with the modern performance-based earthquake engineering framework and aims to design reliable control systems. To this end, an optimization problem has been defined which considers the parameters of control systems as design variables and minimization of the probability of exceeding a targeted structural performance level during the lifetime as an objective function with a constraint on the failure probability of stroke length damage state associated with mass damper mechanism. The effectiveness of the proposed methodology is illustrated through a numerical example of performance analysis of an eight-story nonlinear shear building frame with hysteretic bilinear behavior. The SATMD with variable stiffness and damping have been designed separately with different mass ratios. Their performance has been compared with that of uncontrolled structure and the structure controlled with passive TMD in terms of probabilistic demand curves, response hazard curves, fragility curves, and exceedance probability of performance levels during the lifetime. Numerical results show the effectiveness, simplicity, and reliability of the proposed PBOD method in designing SATMD with variable stiffness and damping for the nonlinear frames where they have reduced the exceedance probability of the structure up to 49% and 44%, respectively.

COGNITIVE RADIO SPECTRUM ACCESS WITH CHANNEL PARTITIONING FOR SECONDARY HANDOVER CALLS

  • Lee, Yutae
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.211-217
    • /
    • 2015
  • A dynamic spectrum access scheme with channel partitioning for secondary handover calls in cognitive radio networks is proposed to reduce forced termination probability due to spectrum handover failure. A continuous-time Markov chain method for evaluating its performance such as blocking probability, forced termination probability, and throughput is presented. Numerical and simulation results are provided to demonstrate the effectiveness of the proposed scheme with channel partitioning.

A Performance Evaluation of Multimedia-on-demand Server Using Simulation Method (시뮬레이션 기법을 이용한 주문형 멀티미디어 서버의 성능 평가)

  • 박기진
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.33-43
    • /
    • 1998
  • To evaluate the server performance and forecast capacity requirements, we carry out simulation of Multimedia-on-demand(MOD) server. In multimedia service environment, especially for on-demand service, one of the key problems is capacity planning, which requires ensuring that adequate computer resources will be available to meet the future workload demands in a cost-effective manner. In this paper, we design and implement a simulation model for MOD server with failures of components (e.g., processors, disks and networks). By acquisition of utilization and queue length parameters, we can estimate desirable capacity of server components with various arrival rates of customers and failure rates of components. For a given failure probability, we also compute packet delay probability and reliability of the server. It is possible to derive some important design information of the MOD server by using the above parameters.

  • PDF

A Study on Optimal Routing of Computer Networks using Neural Networks (신경회로망을 이용한 컴퓨터 네트워크의 최적 라우팅에 관한 연구)

  • Kim, Jung-Ook;Lee, Seok-Pil;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.566-568
    • /
    • 1995
  • An optimal routing method using hysteresis binary neurons with link failure probability is proposed in this paper. The link failures in computer networks can degrade the performance of the entire networks. We assume the time between successive link failures is exponentially distributed with parameter ${\lambda}$ and the failures are independent. The link failure probability is used for neural networks to find the shortest paths of given source-destination pairs. By using the probability of link failures and hysteresis binary neurons we implement an optimal routing method that can takes routes by coping with link failures.

  • PDF