• Title/Summary/Keyword: Probability of Error

Search Result 1,362, Processing Time 0.032 seconds

Performance Analysis of Decode-and-Forward Relaying with Partial Relay Selection for Multihop Transmission over Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoe;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.433-441
    • /
    • 2010
  • Multihop transmission is a promising technique that helps in achieving broader coverage (excellent network connectivity) and preventing the impairment of wireless channels. This paper proposes a cluster-based multihop wireless network that makes use of the advantages of multihop relaying, i.e., path loss gain, and partial relay selection in each hop, i.e., spatial diversity. In this partial relay selection, the node with the maximum instantaneous channel gain will serve as the sender for the next hop. With the proposed protocol, the transmit power and spectral efficiency can be improved over those in the case of direct transmission and conventional multihop transmission. Moreover, at a high signal-to-noise ratio (SNR), the performance of the system with at least two nodes in each cluster is dependent only on the last hop and not on any of the intermediate hops. For a practically feasible decode-and-forward relay strategy, a compact expression for the probability density function of the end-to-end SNR at the destination is derived. This expression is then used to derive closed-form expressions for the outage probability, average symbol error rate, and average bit error rate for M-ary square quadrature amplitude modulation as well as to determine the spectral efficiency of the system. In addition, the probability of SNR gain over direct transmission is investigated for different environments. The mathematical analysis is verified by various simulation results for demonstrating the accuracy of the theoretical approach.

Performance Analysis of Dual-Hop MBST-ADF Relay Networks Over Quasi-Static Rayleigh Fading Channels

  • Kim, Min-Chan;Lim, Sungmook;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.18-27
    • /
    • 2018
  • The objective of this study was to derive approximate closed-form error rates for M-ary burst symbol transmission (MBST) of dual-hop adaptive decode-and-forward (ADF) cooperative relay systems over quasi-static Rayleigh fading channels. Within a burst, there are pilot symbols and data symbols. Pilot symbols are used for channel estimation schemes and each relay node's transmission mode selection schemes. At first, our focus was on ADF relay systems' error-events at relay nodes. Each event's occurrence probability and probability density function (PDF) were then derived. With error-event based approach, we derived a tractable form of PDF for combined signal-to-noise ratio (SNR). Averaged error rates were then derived as approximate expressions for arbitrary link SNR with different modulation orders and numbers of relays. Its accuracy was verified by comparison with simulation results.

Sequential Decoding of Convolutional Codes with Universal Metric over Bursty-Noise Channel (버스트잡음 채널에서 Universal Metric을 이용한 컨벌루션 부호의 축차복호)

  • Moon, Byung-Hyun;Lee, Chae-Wook
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.435-449
    • /
    • 1997
  • In this paper, a new metric, universal metric, is Proposed for sequential decoding of convolutional decoding. The complexity of Fano metric for Fano's sequential decoding algorithm is compared with that of the proposed universal metric. Since the Fano metric assumes that it has previous knowledge of channel transition probability, the complexity of Fano metric increases as the assumed channel error probability does not coincide with the true channel error probability. However, the universal metric dose not require the previous knowledge of the channel transition probability since it is estimated on a branch by branch basis. It is shown that the complexity of universal metric is much less than that of the Fano metric for bursty noisy channel.

  • PDF

Analysis of Nested Case-Control Study Designs: Revisiting the Inverse Probability Weighting Method

  • Kim, Ryung S.
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.455-466
    • /
    • 2013
  • In nested case-control studies, the most common way to make inference under a proportional hazards model is the conditional logistic approach of Thomas (1977). Inclusion probability methods are more efficient than the conditional logistic approach of Thomas; however, the epidemiology research community has not accepted the methods as a replacement of the Thomas' method. This paper promotes the inverse probability weighting method originally proposed by Samuelsen (1997) in combination with an approximate jackknife standard error that can be easily computed using existing software. Simulation studies demonstrate that this approach yields valid type 1 errors and greater powers than the conditional logistic approach in nested case-control designs across various sample sizes and magnitudes of the hazard ratios. A generalization of the method is also made to incorporate additional matching and the stratified Cox model. The proposed method is illustrated with data from a cohort of children with Wilm's tumor to study the association between histological signatures and relapses.

Performance Analysis of Multi-Hop Decode-and-Forward Relaying with Selection Combining

  • Bao, Vo Nguyen Quoe;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.616-623
    • /
    • 2010
  • In this paper, exact closed-form expressions for outage probability and bit error probability (BEP) are presented for multi-hop decode-and-forward (DF) relaying schemes in conjunction with cooperative diversity, in which selection combining technique is employed at each node. We have shown that the proposed protocol offers remarkable diversity advantage over direct transmission as well as the conventional DF relaying schemes with the same combining technique. We then investigate the system performance when different diversity schemes are employed. It has been observed that the system performance loss due to selection combining relative to maximal ratio combining is not significant. Simulations are performed to confirm our theoretical analysis.

Performance Analysis of Coded Cooperation over Rician Fading Channel (Rician fading 채널에서 협력통신을 위한 coded cooperation의 성능분석)

  • Lee, Jae-Young;Kim, Sung-Il;Im, Hyun-Ho;Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.245-253
    • /
    • 2010
  • In this paper, we derive the performance analysis of the coded cooperation over a Rician fading channel. A new scheme called coded cooperation was suggested by using user cooperation and channel codes simultaneously. In previous works, it was verified that the coded cooperation schemes have better performance than other relay schemes in a Rayleigh fading channel. However, the high speed short range indoor wireless communication system has recently attracted research attention and its channel with very high carrier frequency(60GHz) can be typically modeled as a Rician fading channel. We derive analytical outage probabilities and bit error probabilities of the coded cooperation over the Rician fading channel and prove it to have full diversity order.

Analysis of CRC-p Code Performance and Determination of Optimal CRC Code for VHF Band Maritime Ad-hoc Wireless Communication (CRC-p 코드 성능분석 및 VHF 대역 해양 ad-hoc 무선 통신용 최적 CRC 코드의 결정)

  • Cha, You-Gang;Cheong, Cha-Keon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.438-449
    • /
    • 2012
  • This paper presents new CRC-p codes for VHF band maritime wireless communication system based on performance analysis of various CRC codes. For this purpose, we firstly describe the method of determination of undetected error probability and minimum Hamming distance according to variation of CRC codeword length. By using the fact that the dual code of cyclic Hamming code and primitive BCH code become maximum length codes, we present an algorithm for computation of undetected error probability and minimum Hamming distance where the concept of simple hardware that is consisted of linear feedback shift register is utilized to compute the weight distribution of CRC codes. We also present construction of transmit data frame of VHF band maritime wireless communication system and specification of major communication parameters. Finally, new optimal CRC-p codes are presented based on the simulation results of undetected error probability and minimum Hamming distance using the various generator polynomials of CRC codes, and their performances are evaluated with simulation results of bit error rate based on the Rician maritime channel model and ${\pi}$/4-DQPSK modulator.

MEASURING THE INFLUENCE OF TASK COMPLEXITY ON HUMAN ERROR PROBABILITY: AN EMPIRICAL EVALUATION

  • Podofillini, Luca;Park, Jinkyun;Dang, Vinh N.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.151-164
    • /
    • 2013
  • A key input for the assessment of Human Error Probabilities (HEPs) with Human Reliability Analysis (HRA) methods is the evaluation of the factors influencing the human performance (often referred to as Performance Shaping Factors, PSFs). In general, the definition of these factors and the supporting guidance are such that their evaluation involves significant subjectivity. This affects the repeatability of HRA results as well as the collection of HRA data for model construction and verification. In this context, the present paper considers the TAsk COMplexity (TACOM) measure, developed by one of the authors to quantify the complexity of procedure-guided tasks (by the operating crew of nuclear power plants in emergency situations), and evaluates its use to represent (objectively and quantitatively) task complexity issues relevant to HRA methods. In particular, TACOM scores are calculated for five Human Failure Events (HFEs) for which empirical evidence on the HEPs (albeit with large uncertainty) and influencing factors are available - from the International HRA Empirical Study. The empirical evaluation has shown promising results. The TACOM score increases as the empirical HEP of the selected HFEs increases. Except for one case, TACOM scores are well distinguished if related to different difficulty categories (e.g., "easy" vs. "somewhat difficult"), while values corresponding to tasks within the same category are very close. Despite some important limitations related to the small number of HFEs investigated and the large uncertainty in their HEPs, this paper presents one of few attempts to empirically study the effect of a performance shaping factor on the human error probability. This type of study is important to enhance the empirical basis of HRA methods, to make sure that 1) the definitions of the PSFs cover the influences important for HRA (i.e., influencing the error probability), and 2) the quantitative relationships among PSFs and error probability are adequately represented.

A Study on the Diversity Reception Performance of Spread Spectrum Signals in Interference and Fading Environments (간섭과 페이딩환경에서 스펙트럼 확산(SS) 통신 신호의 다이버시티 수신 특성에 관한 연구)

  • 강희조;이권현;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.901-911
    • /
    • 1994
  • The error performance of M-ary differential phase shift keying (MDPSK) through m-distribution fading channel in hybrid direct sequence/slow frequency hopped spread spectrum multiple access (DS/SFH-SSMA) systems has been evaluated, and also the error probability has been evaluate when adopting diversity technique and coding technique. From the results, we know that the error performance more deteriorates as depth of fading becomes deeper. In Rayleigh fading environment (m=1), increasing of the number of frequency hopping (q) reduces the effect of multiple access interference, because it decreases the probability a hit. When q is much larger than the number of user (K), the probability of error in high E/N region is dominated by the multipath interference while the multiple access interference is negligible. In lower E/N region, the probability of error is independent of q because the effect of gaussian noise becomes dominat.

  • PDF

A Study on the Performance Noncoherent FH/FSK Including Multitone Jamming (멀티톤 재밍을 고려한 비동기 FH/FSK 성능 분석에 관한 연구)

  • Ahn, Jung-Soo;Park, Jin-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.1-9
    • /
    • 1990
  • The performance of noncoherent FH/FSK system in the presence of multitone jamming and noise is analyged. Random and the structured jammings are considered as a multitone jamming model. The probability density function is derived and then optimum decision rule is applied to determine error probability of each cases. As a result, error probabilities of random and structured multitone jamming are shown as a function of number of jamming tones, jamming to signal power ratio, jamming signal phase and one jamming tone power to signal power ratio under Worst-case Jamming interference. It is found that error probability is maximam when one jamming tone power to signal power ratio is 1. Also we know that error performance of random and structured jamming is almost equal.

  • PDF