Sequential Decoding of Convolutional Codes
with Universal Metric over Bursty—Noise Channel
H2AERS Ado A Universal Metricg
g3 AWEA 25| ZJES

Byung Hyun Moon - Chae Wook Lee
(School of Computer and Communication, Taegu University)

Abstract

In this paper, a new metric, universal metric, is proposed for sequential decoding of
convolutional decoding. The complexity of Fano metric for Fano's sequential decoding
algorithm is compared with that of the proposed universal metric. Since the Fano
metric assumes that it has previous knowledge of channel transition probability, the
complexity of Fano metric increases as the assumed channel error probability does not
coincide with the true channel error probability. However, the universal metric dose not
require the previous knowledge of the channel transition probability since it is estimated
on a branch by branch basis. It is shown that the complexity of universal metric is
much less than that of the Fano metric for bursty noisy channel.

I. Introduction

Massey [1] proved that the heuristic Fano metric is actually a logical choice for

maximum likelihood decoding for convolutional codes. However, the Fano metric

requires true channel transition probability to calculate the metric. On the other

hand, the proposed universal metric does not require previous knowledge of the

channel transition probability.

A sequential decoder is desirable for long constraint length codes and channel
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memories since the Viterbi algorithm decoder’s complexity grows exponentially with
the equivalent constraint length. To apply the sequential algorithm, a branch metric
is computed for each branch and the branch with the largest metric is added to the
path at the node. Different versions of the sequential algorithm, such as the stack
algorithm or Fano algorithm can be applied to the decoding tree, as long as the
metric is defined. In this paper, Fano algorithm is used to compare the decoding
complexity of the Fano metric and the universal metric over the bursty error

channel.

Il. Preliminaries

A. Bursty-noise Channel

1-p

0 > 0
p
p

1 > 1
1-p

Fig. 1. Binary symmtric channel

A discrete communication channel shown in Fig. 1 is called a binary symmetric
channel (BSC). If the channel input is 0, the channel output is 0 with probability
(1-p) and is 1 with probability p. If the channel input is 1, the channel output is 1
with probability (1-p) and is O with probability p. In this paper, BSC is assumed
for all the applications. However, the bit errors on real channels occur in bursts
which are not well modeled by a memoryless statistical model. Error bursts can
occur in military environments [2], satellite systems [3], concatenated coding
schemes [4,5], and from optical storage media such as compact discs [6].

Channels exhibiting error bursts have been modeled by Markov processes, by
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impulse noise, and by bursty-noise. For simplicity, the bursty-noise in this paper is
defined to be the background Gaussian noise plus burst noise, where burst noise is
defined to be a series of finite-duration Gaussian—-noise pulses with variable

duration and arbitray occurance time.

B. Convolutional Encoder

For the use of BSC, convolutional codes can be generated by a convolutional
encoder as shown in Fig. 2. The encoder consists of an N bit shift resisters and n
modulo-2 adders. The connection between a shift register and a modulo-2 adder is

specified by a set of coefficients C; where i=1,2, . . . N and j=1,2, . . . n. If the

ith stage of a shift register is connected to a jth modulo 2 adder,

stage 1 stage N
input l /
Cun= Con=1
Adder1( ) () - Adder n
—
output

Fig. 2. Binary convolution encoder

then C;=1. When there is no connection between ith stage of a shift register
and jth modulo 2 adder, C;=0.
The operation of a convolutional encoder is as follows. Assume that the output

?,: (xf,xé, ---,x;) is to be encoded. First, the contents of all N stages of the shift
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register are set to zero. Then, the first digit, xi, of ?, 1s shifted into the first
stage of the shift registers. The n modulo-2 adders are sampled and passed to the
input of the BSC for transmission. This procedure continues until the last
component of ;: shifts into the first stage of the shift registers.

In a shift register encoder, an (nk) convolutional code is equivalent to k
information bits entering the encoder genarating n encoded bits. The number N is
defined as constraint length of the encoder. Also, the rate of a binary (nk)

convolutional code, R, is defined as

(1)

R |

C. Tree Structure

This section considers how a convolutional encoder constructs an output sequence
_y)‘ from the input 2=(xix§x;) The first n digits of _; are obtained by
shifting the first bit xi into the shift register and sampling n modulo-2 adders. An
input tree can be obtained by adapting the convention that it corresponds to an
upward branch if “0” shifts into the shift register and a downward branch if "1”
shifts into the shift register. As an example, the set of 16 input sequences with 4
digits long is diagrammed in Fig. 3.

A code tree can be obtained by writing along each branch of the input tree the n
digits of —; associated with input sequence. Consider a particular conventional
encoder with N=4, n=3 and k=1 as shown in Fig. 4. Then, the corresponding code
tree can be constructed as shown in Fig. 5. If k=2, 4 branches will grow out of a
node. In general, 2% branches will grow out of a node if k information bits shift
into a convolutional encoder. [7]

A code tree can be obtained by writing along each branch of the input tree the n

digits
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of ; associated with input sequence. Consider a particular conventional encoder
with N=4, n=3 and k=1 as shown in Fig. 4. Then, the corresponding code tree can

be constructed as

000 Yo
000 Y,
110 Y,
000 Y,
101 Y,
101
110 Ys
0
T o1 Ye
Y7
¢ 011 A
101 Y
1
101 Yio
110 Yy
110 Yy,
011 Y3
011 Vi
Y

Fig. 3. A diagram of 16 input sequences

shown in Fig. 5. If k=2, 4 branches will grow out of a node. In general, 2k
branches will grow out of a node if k information bits shift into a convolutional

encoder. [7]

Define an encoder matrix to be G. Then, the encoder matrix corresponds to Fig.
4 can be represented by using the notation C; introduced previously. An encoder
matrix for the encorder shown in Fig. 4 is given by

11
Cy Cp Cy Cy :[1 0
01

[Cu Cyp Cy Cu
G:
Cy Cyp Cy Cy

00
8
11
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stage1 . . . 4

x-register

adder 1

Fig. 4. A convolutional encoder with
N=4, n=3 and k=1

ill. The Universal and Fano Metric

Let Y and Z be two finite sets where Y={0,1} and Z={0,1}. Let

y={(y, ¥9, -, ¥,) and z=(z| 2z, **, 2,) be arbitrary n sequences over Y

and Z, respectively. Then, the universal metric between -y) and ; is defined by

y=(y, Y5 =, v, and z=(zy 23, '+, z,) be arbitrary n sequences over Y

and Z, respectively. Then, the universal metric between _y) and z is defined by
r(y;z2)=Ky;z)-B (2)

where B is bias term and I(_;) ;?) is mutual information between ; and ;

The mutual information is given by

;i‘bb 504, 7) - log( p*fsz( 213( ) ) (3)

For each s=Y and t=Z, the probability distribution p;(s) is defined as the
frcction of coordinates i such that y;=s. Similiarly, p3(#) and pi;(s, ) are

defined as the fraction of coordinates i such that z;,=¢ and y;=s and z;,=¢

respectively.
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Xy = 1111

Fig. 5. Code tree for encoder of Fig. 4.

The Fano metric is defined as

ry=3 [l°g(_p§3%il)_1?]

where p(zly;) is the channel error probability and R is the rate of the

convolutional code. [8]

IV. The Fano Algorithm

The Fano algorithm works as follows. At every stage, the decoder is located at
some node in the code tree. From this node, the decoder locks deeper into the tree.
If it finds a node with a metric greater than the threshold, T, then it moves to that

node. If not, it will move backword and try to move forward along another branch.

The detailes of the Fano algorithm are given in Fig. 6. [9]
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Fig. 6. A flowchart description of the Fano algorithm.

V. Example of the Fano Algorithm Using the Universal Metric

In this section, the Fano algorithm using universal metric is illustrated as an

example. Consider a (8,1) convolutional encoder with encoder matrix given as below

001010010
101101011
010111011

c=1001000100
011010110
100100011
100110110
11100010 1]
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Fig. 7. Code tree with corresponding metric values for the example

Table 1. Summary of node visited and the value of threshold.

Step Node Threshold Location
1 origin 0.0 1
2 origin -1.0 4
3 A -1.0 2
4 origin -1.0 5
5 origin -10 6
6 B -1.0 2
7 F -1.0 2
8 F -1.0 3
9 F 5.0 4

10 M 4.0 2
11 P 4.0 2
STOP
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Assume the input sequence be x=(1,1,0,1). Let the output sequence y =
(31, Vo ¥a, ¥) .Then the first 8 digits of y is given as % = (01,000,111

corresponding to the first input. Similiarly, the rest of the output sequence is given

—

by ¥, = (011,011,1,0), s = (1,1,1,1,0000) and y; = (1,1,1,1,1,000). Assume the

—_— —

. — —_— — — —
channel noise sequence be #n = (, ny ny, 13, #y) where n;=(1,1,1,1,00,0,0), =,

=(0,0,0,0,0,0,0,0, ;;=(1,1,1,1,0,0,0,0) and Z=(0,0,0,0,0,0,0,0). Then, the channel output

- _ —> —> —>

sequence 2=( 2|, 2y, 23, 24) iIs given as Z=(I,O,1,1,0,1,1,1), Z=(0,1,1,0,1,1,1,0),

;;=(0,0,0,0,0,0,0,0), and Z=(1,1,1,1,1,0,0,0)‘ Now, the code tree with corresponding
metric value calculated from universal metric using Eq. (3) is drawn in Fig. 7. The
bias term, B, is set to the rate of the code which is 1/8. Table 1 summarizes the
behavior of Fano algorithm by listing each of the changes in either the node visited
or the threshold together with the location in the flow chart in Fig. 6 where the
changes occur.

Let’'s define the complexity of the algorithm as the number of the nodes visited
until the decoder reaches the last level of the code tree. Then, the complexity of

the example above is given by 11.

VI. Simulation Results

In order to compare the complexity of the universal and Fano metric over binary
symmetric channel, Monte Carlo simulations are performed. For a given channel
error probability, comparisons are made for the complexity of the algorithm that
will determine the efficiency of universal metric and the Fano metric. All the
simulation results are basd on a fixed code rate of 0.1, a fixed constraint length of
20 with variable k. And, the length of the input sequence is fixed at 100.

The summary of the simulation results is shown in Figure 1 and 2. Figure 1
represents the complexity of universal and Fano metric for k=2 with variable

channel error probbility. The complexity of the universal metric is at least twice as
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Figure 1. Complexity of Fano and Universal Metric for k=2.
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Figure 2. Complexity of Fano and Universal Metric for k=3.
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large as the Fano metric. In fact, the complexity of the universal metric is almost 5
times than that of the Fano metric for the channel transition probability of 0.18.
Figure 2 shows the complexity of universal and Fano metric for k=3 with variable
channel error probability. The complexity of universal and Fano metric is similiar to
the case with k=2. As the channel error probability increases, the complexity of
universal metric increases drastically. On the other hand, the complexity of the
Fano metric increases slowly.

In order to measure the performance of the universal metric and compare with Fano
metric over the bursty-noisy channel, the following 2 cases of bursty—noise are are
considered in the simulations. For case 1, the channel goes into burst error mode with
probability 0.1 and the burst noise lasts for 3 branches of code tree with variable
channel error probability. For case 2, the channel goes into burst error fmode with
probability 0.1 and the burst noise lasts for 4 branches of code tree with variable
channel erorr probability. The background chanel error probability is deliverately
chosen to be low in order to observe the effect of bursty—noise to the metric.

The simulations are based on an input sequence of length 100 with k=2 and
encoder matrix of 20 by 20. For each case, ten cases of different channel error
probability due to gackground Gaussian noise were tested to compare the
complexity of the universal metric with Fano metric over bursty error channel

As shown in Figure 3, the complexity of the universal metric over the first case
of the bursty-noise is much less than that of Fano metric. As a matter of fact, the
complexity of the universal metric is less than half of the Fano’s with the
background channel error probability of 0.076. The similiar results are obtained for
the second bursty-noise as shown in Figure 4. As shown in Figure 3 and 4, the
complexity of universal métric for the second bursty-noise is slightly higher than

the first bursty-noise.

VIl. Conclusion

Universal metric that does not require exact channel error probability is proposed

-446-



350

: —e— Fano Metric i |
300 v—‘ —8— Universal Metric | i

250 » \

/ N /|

>,

—
. 200 |
= |
2 150
= ¥
£ \/ \ /.
o
G 100 -
50
o}
0038 0046 0047 0053 0056 0061 0063 0066

Channel Error Probability

Figure 3. Complexity of Fano and Universal Metric for the 1st Bursty-noise
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Figure 4. Complexity of Fano and Universal Metric for the 2nd Bursty-noise.
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for sequential decoding. It is shown that the complexity of the universal metric is
much larger than the maximum likelihood metric, Fano metric, for binary symmetric
channel.

Since the channel error probability of the bursty-noise channel is different from
the exact channel error probability, the complexity of the universal metric is less
than the Fano metric over the bursty-noise channel. For the bursty-noise channel,
the effetiveness of universal metric for the sequential decoding of convolutional

codes is verified.
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