• Title/Summary/Keyword: Probability method

Search Result 4,611, Processing Time 0.036 seconds

Probabilistic Forecasting of Seasonal Inflow to Reservoir (계절별 저수지 유입량의 확률예측)

  • Kang, Jaewon
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.965-977
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. It is necessary to get probabilistic forecasts to establish risk-based reservoir operation policies. Probabilistic forecasts may be useful for the users who assess and manage risks according to decision-making responding forecasting results. Probabilistic forecasting of seasonal inflow to Andong dam is performed and assessed using selected predictors from sea surface temperature and 500 hPa geopotential height data. Categorical probability forecast by Piechota's method and logistic regression analysis, and probability forecast by conditional probability density function are used to forecast seasonal inflow. Kernel density function is used in categorical probability forecast by Piechota's method and probability forecast by conditional probability density function. The results of categorical probability forecasts are assessed by Brier skill score. The assessment reveals that the categorical probability forecasts are better than the reference forecasts. The results of forecasts using conditional probability density function are assessed by qualitative approach and transformed categorical probability forecasts. The assessment of the forecasts which are transformed to categorical probability forecasts shows that the results of the forecasts by conditional probability density function are much better than those of the forecasts by Piechota's method and logistic regression analysis except for winter season data.

Analysis of structural dynamic reliability based on the probability density evolution method

  • Fang, Yongfeng;Chen, Jianjun;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.201-209
    • /
    • 2013
  • A new dynamic reliability analysis of structure under repeated random loads is proposed in this paper. The proposed method is developed based on the idea that the probability density of several times random loads can be derived from the probability density of single-time random load. The reliability prediction models of structure based on time responses under several times random loads with and without strength degradation are obtained by using the stress-strength interference theory and probability density evolution method. The resulting differential equations in the prediction models can be solved by using the forward finite difference method. Then, the probability density functions of strength redundancy of the structures can be obtained. Finally, the structural dynamic reliability can be calculated using integral method. The efficiency of the proposed method is demonstrated numerically through a speed reducer. The results have shown that the proposed method is practicable, feasible and gives reasonably accurate prediction.

Evaluation of Extreme Sea Levels Using Long Term Tidal Data (검조기록을 이용한 극치해면 산정)

  • 심재설;오병철;김상익
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.250-260
    • /
    • 1992
  • Two methods for computing extreme sea levels, which are the extreme probability method and the joint probability method, are examined at five different ports (Incheon, Cheju, Yeosu, Pusan, Mukho). The extreme probability mothod estimates the extreme sea levels from three different probability papers of Gumbel, Weibull and generalized extreme value(GEV) using the least square method, conventional moment method and probability weighted moment method. respectively. The results showed that the extreme sea levels estimated by the Gumbel paper or the least square method appeared higher than those calculated by other papers or methods. The extreme values estimated by the extreme probability method are approximately 5-10 cm lower than the values by the joint probability method.

  • PDF

Probability-Based Context-Generation Model with Situation Propagation Network (상황 전파 네트워크를 이용한 확률기반 상황생성 모델)

  • Cheon, Seong-Pyo;Kim, Sung-Shin
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.56-61
    • /
    • 2009
  • A probability-based data generation is a typical context-generation method that is a not only simple and strong data generation method but also easy to update generation conditions. However, the probability-based context-generation method has been found its natural-born ambiguousness and confliction problems in generated context data. In order to compensate for the disadvantages of the probabilistic random data generation method, a situation propagation network is proposed in this paper. The situation propagating network is designed to update parameters of probability functions are included in probability-based data generation model. The proposed probability-based context-generation model generates two kinds of contexts: one is related to independent contexts, and the other is related to conditional contexts. The results of the proposed model are compared with the results of the probabilitybased model with respect to performance, reduction of ambiguity, and confliction.

  • PDF

Comparison among Methods of Modeling Epistemic Uncertainty in Reliability Estimation (신뢰성 해석을 위한 인식론적 불확실성 모델링 방법 비교)

  • Yoo, Min Young;Kim, Nam Ho;Choi, Joo Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.605-613
    • /
    • 2014
  • Epistemic uncertainty, the lack of knowledge, is often more important than aleatory uncertainty, variability, in estimating reliability of a system. While the probability theory is widely used for modeling aleatory uncertainty, there is no dominant approach to model epistemic uncertainty. Different approaches have been developed to handle epistemic uncertainties using various theories, such as probability theory, fuzzy sets, evidence theory and possibility theory. However, since these methods are developed from different statistics theories, it is difficult to interpret the result from one method to the other. The goal of this paper is to compare different methods in handling epistemic uncertainty in the view point of calculating the probability of failure. In particular, four different methods are compared; the probability method, the combined distribution method, interval analysis method, and the evidence theory. Characteristics of individual methods are compared in the view point of reliability analysis.

Estimation Using Response Probability Under Callbacks

  • Park, Hyeon-Ah
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2007.11a
    • /
    • pp.213-230
    • /
    • 2007
  • Although the response model has been frequently applied to nonresponse weighting adjustment or imputation, the estimation under callbacks has been relatively underdeveloped in the response model. The estimation method using the response probability is developed under callbacks. A replication method for the estimation of the variance of the proposed estimation is also developed. Since the true response probability is usually unknown, we study the estimation of the response probability. Finally, we propose an estimator under callbacks using the ratio imputation as well as the response probability. The simulation study illustrates our techniques.

  • PDF

A Novel Posterior Probability Estimation Method for Multi-label Naive Bayes Classification

  • Kim, Hae-Cheon;Lee, Jaesung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.6
    • /
    • pp.1-7
    • /
    • 2018
  • A multi-label classification is to find multiple labels associated with the input pattern. Multi-label classification can be achieved by extending conventional single-label classification. Common extension techniques are known as Binary relevance, Label powerset, and Classifier chains. However, most of the extended multi-label naive bayes classifier has not been able to accurately estimate posterior probabilities because it does not reflect the label dependency. And the remaining extended multi-label naive bayes classifier has a problem that it is unstable to estimate posterior probability according to the label selection order. To estimate posterior probability well, we propose a new posterior probability estimation method that reflects the probability between all labels and labels efficiently. The proposed method reflects the correlation between labels. And we have confirmed through experiments that the extended multi-label naive bayes classifier using the proposed method has higher accuracy then the existing multi-label naive bayes classifiers.

A response probability estimation for non-ignorable non-response

  • Chung, Hee Young;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.263-275
    • /
    • 2022
  • Use of appropriate technique for non-response occurring in sample survey improves the accuracy of the estimation. Many studies have been conducted for handling non-ignorable non-response and commonly the response probability is estimated using the propensity score method. Recently, post-stratification method to obtain the response probability proposed by Chung and Shin (2017) reduces the effect of bias and gives a good performance in terms of the MSE. In this study, we propose a new response probability estimation method by combining the propensity score adjustment method using the logistic regression model with post-stratification method used in Chung and Shin (2017). The superiority of the proposed method is confirmed through simulation.

A 3D analytical model for the probabilistic characteristics of self-healing model for concrete using spherical microcapsule

  • Zhu, Hehua;Zhou, Shuai;Yan, Zhiguo;Ju, Woody;Chen, Qing
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.37-54
    • /
    • 2015
  • In general, cracks significantly deteriorate the in-situ performance of concrete members and structures, especially in urban metro tunnels that have been embedded in saturated soft soils. The microcapsule self-healing method is a newly developed healing method for repairing cracked concrete. To investigate the optimal microcapsule parameters that will have the best healing effect in concrete, a 3D analytical probability healing model is proposed; it is based on the microcapsule self-healing method's healing mechanism, and its purpose is to predict the healing efficiency and healing probability of given cracks. The proposed model comprehensively considers the radius and the volume fraction of microcapsules, the expected healing efficiency, the parameters of cracks, the broken ratio and the healing probability. Furthermore, a simplified probability healing model is proposed to facilitate the calculation. Then, a Monte Carlo test is conducted to verify the proposed 3D analytical probability healing model. Finally, the influences of microcapsules' parameters on the healing efficiency and the healing probability of the microcapsule self-healing method are examined in light of the proposed probability model.

Moments of Probability Distributions Derived Using Differential Operators

  • Kwan-Joong Kang
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.189-193
    • /
    • 1996
  • In 1992. Boullion obtained the method of the calculus of the moments of discrete probability distributions using differential operator, and he published the method of calculus of the moments. The purpose of this paper is to introduce an idea that this method can be applied to calculate the moments of continuous probability distributions.

  • PDF