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Abstract
Use of appropriate technique for non-response occurring in sample survey improves the accuracy of the

estimation. Many studies have been conducted for handling non-ignorable non-response and commonly the
response probability is estimated using the propensity score method. Recently, post-stratification method to
obtain the response probability proposed by Chung and Shin (2017) reduces the effect of bias and gives a good
performance in terms of the MSE. In this study, we propose a new response probability estimation method
by combining the propensity score adjustment method using the logistic regression model with post-stratification
method used in Chung and Shin (2017). The superiority of the proposed method is confirmed through simulation.

Keywords: response probability model, bias estimation, sample distribution, population distribu-
tion, post-stratification

1. Introduction

Non-response in sample survey is a common source of non-sampling error that appears when part
of the data to be collected is not observed. In the case of missing at random (MAR) in which non-
response occurs randomly, many appropriate statistical methods have been developed. On the other
hand, in the case of non-ignorable non-response, there are relatively few studies on this subject. Non-
ignorable non-response is known to cause bias and so accurate bias estimation is the key to properly
handle the non-response. The PSA estimator, propensity-score-adjusted estimator, defined by

ŶPSA =
1
N

∑
i∈s

wi
Ri

p̂i
yi, (1.1)

is widely used to reduce non-response bias. Here Ri is 1 if response and Ri is 0 if non-response and s is
an index set of sample. Also, wi is the sample weight and p̂i is the estimated response probability. Kim
and Riddles (2012) developed some asymptotic theories of the PSA estimator and suggested minimum
variance of the estimator. Kim and Yu (2011) studied a mean estimation method for non-ignorable
non-response case in which paper the missing value of the variable of interest is non-parametrically
calculated using a kernel estimator. Riddles et al. (2016) proposed a propensity score adjustment
method for non-ignorable non-response and showed that the proposed method is more efficient than
the calibration-weighting method in Chang and Kott (2008) and Kott and Chang (2010).
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In order to use the PSA estimator, it is necessary to estimate the response probability. Estimating
response probabilities relies heavily on the use of model. Iannacchione et al. (1991) used a logistic
regression model for the response probability estimation and this logistic regression model is widely
used. Also Da Silva and Opsomer (2006) and Da Silva and Opsomer (2009) considered nonparametric
methods to obtain the response probability. Bethlehem (2020) presented an approximate bias of the
sample mean for non-ignorable non-response. Various response probability estimation methods have
been addressed in that paper.

In general, the final sample weight considering non-response is used for estimation defined by

Ŷadj =
1
N

∑
i∈s

ŵF
i yi. (1.2)

Therefore, the PSA estimator using ŵF
i = wi/ p̂i is one of the non-response adjusted weight estimators.

Chung and Shin (2017) suggested a non-response adjusted weight estimation method using a post-
stratification which is addressed in Bethlehem (2020). This method reduces the effect of bias and
gives a good performance in terms of the MSE.

In this study, we propose a new response probability estimation method that combines the response
probability estimation method using logistic regression model with the post-stratification method sug-
gested by Chung and Shin (2017).

The composition of this paper is as follows. In Section 2, the existing methods and a proposed
method for the response probability estimation are explained. Section 3 describes the bias corrected
PSA estimators using the response probability estimates obtained in Section 2. Section 4 confirms the
superiority of the proposed method through simulation studies. There is a conclusion in Section 5.

2. Response probability estimation

2.1. Modeling method

In order to properly handle non-ignorable non-response, the response probability of each data must
be appropriately estimated. As mentioned in Bethlehem (2020), various methods can be used for the
estimation. The propensity score using the logistic regression model is the most commonly used. Let
Ri be the indicator variable representing the response and pi be the response probability. Also let
the auxiliary variable xi be a p-dimensional vector and always observable. Usually for non-ignorable
non-response, it is assumed that pi is a function of yi and xi. However, in this study, we assume that
the response probability pi is a function of yi for simplicity.

Then, we can write pi = P(Ri = 1|yi, xi) = P(Ri = 1|yi) = g2(yi; φ). Practically, we do not have
enough information to estimate pi and mostly the function is not known. To handle this situation, Kim
and Yu (2011) and Kim and Riddles (2012) used some follow-up samples. However, this is not the
usual case.

Mostly, the variable of interest is related to the auxiliary variables and therefore many studies
consider a super-population model. Let the super-population model be yi = g1(xi; β) + εi and assume

pi = P (Ri = 1|yi) = g2 (g1 (xi; β) + εi; φ) ≈ m (xi; θ) + ηi, (2.1)

where θ is a vector of some unknown parameters and ηi is an error related to εi. Since this study
considers non-ignorable non-response, it may not be appropriate to use a function of the auxiliary
variable xi. However, in reality, in order to estimate the response probability, we have no choice but
to use the available auxiliary variables. Considering this, equation (2.1) may be useful. However, bias
may occur in the result using the response probability obtained in equation (2.1).
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The approximate estimate of pi can be obtained using the available auxiliary variable xi. The
most common response probability estimation method is to use the parametric logistic regression
model. Of course, nonparametric methods can be used as Da Silva and Opsomer (2006) and Da
Silva and Opsomer (2009). Da Silva and Opsomer (2009) showed that local polynomial regression
results in better practical and theoretical properties for the ignorable case. Recently Bethlehem (2020)
studied the non-ignorable non-response and used the logistic regression modeling. Since the logistic
regression model is commonly used and simple to implement, we use the logistic regression model in
this paper. The logistic regression model is defined by

log
(

pi

1 − pi

)
= α0 + α1x1i + · · · + αpxpi.

Using this model, we can obtain the response probability estimate p̂P
i . Now let ŵP

i = wi/ p̂P
i . Then

the final adjusted sample weight is obtained by following,

ŵF(P)
i = ŵP

i
N∑

j∈s ŵP
j

(2.2)

In Riddles et al. (2016), (2.2) is called naive estimator for non-ignorable non-response.

2.2. Post-stratification method

Several methods estimating response probability have been developed. One of them is the post-
stratification method. As mentioned in Bethlehem (2020), post-stratification is a well-known and
frequently used weighting technique. Usually categorical variables are used. Using these variables,
population is divided into a number of non-overlapping subpopulations, called strata. Of course,
continuous variables can be used and Bethlehem (2020) used the estimated response probability to
construct subpopulations. Although (2.1) is an approximate result, naturally we can use the available
auxiliary variable in order to construct strata. Chung and Shin (2017) and Min and Shin (2018)
proposed a response probability estimation method using strata. In the proposed method by Min and
Shin (2018), population is divided into L strata with boundaries obtained using percentiles of given
auxiliary variable.

To construct the strata, we determine the total number of strata, L satisfying about r/L ≥ 10 where
r is the total number of response samples. Then with L, we calculate the percentiles of the auxiliary
variables and use the percentiles as boundaries. For instance, with L = 10, we use 10, 20, . . . , 90
percentiles for boundaries. For univariate case, the percentiles become directly boundaries. However,
for multivariate case, we use the Cartesian product with the percentiles of each auxiliary variable to
meet the total number of strata L.

Now, let Nh and rh be the number of population and the number of final response samples in the
hth stratum, respectively. Then the sample weight of yi in the hth stratum using the post-stratification
method is defined by

ŵF(D)
i =

L∑
h=1

Nh

rh
I(i ∈ sh), (2.3)

where sh is the index set of hth stratum sample. Since this method does not use any model to estimate
the response probability, it is model free and naturally robust of model misspecification.
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2.3. Proposed response probability estimation method

The widely used ŵF(P)
i is obtained using the individual data values. However, since it is based on a

model, the results may vary depending on the model used. On the other hand, ŵF(D)
i has the advantage

of being easy to calculate because it uses the number of samples in a given stratum rather than the
individual data values. Again, the result may depend on the method of constructing the strata and the
optimal boundaries of the strata are determined according to the given data.

A new method combining two methods explained in section 2.1 and 2.2 is proposed. First we
calculate ŵF(P)

i explained in section 2.1. Then we make sum of ŵF(P)
j in the hth stratum be Nh. That is,

the final sample weight is defined by

ŵF(C)
i = ŵP

i

L∑
h=1

Nh∑
j∈sh

ŵP
j

I(i ∈ sh), (2.4)

where Nh and sh are the same as those defined in (2.3).

3. Bias corrected propensity-score-adjusted (PSA) estimator

In the case of non-ignorable non-response, since the response probability is a function of the variable
of interest, it is necessary to estimate the response probability using the variable of interest. However,
as mentioned before it is practically hard to obtain the response probability using the variable of
interest. In Section 2, the response probability is estimated using the available auxiliary variables
and this usually produces bias in estimation. To obtain better estimation results, the bias should be
estimated and corrected.

3.1. Bias estimation

For bias estimation, this section considers a super-population model. Let the inclusion probabil-
ity, πi be a function of the variable of interest yi and fp(yi|xi) be a population distribution with
a super-population model. Pfeffermann et al. (1998) showed fs(yi|θ

∗, xi) = f (yi|i ∈ s, xi) =

{Pr(i ∈ s|yi, xi) fp(yi|θ, xi)} / {Pr(i ∈ s|xi)}where θ∗ is a function of θ. Since Pr(i ∈ s|yi, xi) = Ep(πi|yi, xi)
and Pr(i ∈ s|xi) = Ep(πi|xi), finally we have

fs (yi|xi) =
Ep (πi|yi, xi) fp (yi|xi)

Ep (πi|xi)
, (3.1)

where fs(yi|xi) is a sample distribution, Ep(πi|yi, xi) is the sample inclusion probability given xi, yi

and Ep(πi|xi) is the sample inclusion probability given xi. Whenever Ep(πi|yi, xi) = Ep(πi|xi), then
population distribution and sample distribution are the same. Therefore, with known inclusion prob-
ability and population distribution we can obtain the sample distribution and finally, we can calculate
the bias. Bias estimation using various inclusion probabilities and population distributions have been
obtained in previous studies.

In this study we consider a non-ignorable non-response with a non-informative sampling. Actually
the final inclusion probability πi is obtained by combining the inclusion probability at the time of
sampling design and the response probability. As a non-informative sampling design, we use simple
random sampling and so wi in (1.1) is constant. Therefore πi used in (3.1) is defined by πi = pi/wi =

pi/w where w = N/n. Since pi is a function of the variable of interest yi, we have fs(yi|xi) , fp(yi|xi)
and so we can apply the bias estimation method developed in the informative sampling design to
non-ignorable non-response.
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We consider a linear inclusion probability model whose bias is easily estimated theoretically. This
is because, if the linear inclusion probability model is effective, it can be expected to be effective
when using other inclusion probability models. The linear inclusion probability model considered is
as follows,

Ep (πi|yi, xi) = Ep (πi|yi) = b0 + b1yi. (3.2)

Then simply we have

Ep (πi|xi) = E
(
Ep (πi|yi, xi) |xi

)
= E (b0 + b1yi|xi) = b0 + b1Ep (yi|xi) , (3.3)

Ep (πi|yi, xi)
Ep (πi|xi)

=
b0 + b1yi

b0 + b1Ep (yi|xi)
. (3.4)

Let Es(yi|xi) = µ(s)
i . Then plugging (3.4) into (3.1) we have,

µ(s)
i =

∫
yi

(
b0 + b1yi

b0 + b1Ep (yi|xi)

)
fp (yi|xi) dyi =

b0µi + b1Ep

(
y2

i |xi
)

b0 + b1µi
, (3.5)

where µi = Ep(yi|xi). Since Ep(y2
i |xi) = Varp(yi|xi) + µ2

i , we have µ(s)
i = µi + b1/b0 + b1µi ×Varp(yi|xi)

and finally the bias is obtained as following,

b1

b0 + b1µi
× Varp (yi|xi) . (3.6)

3.2. Parameter estimation for inclusion probability model

Bias is estimated based on the super-population model and the inclusion probability model estab-
lished.

In (3.2), Ep(πi|yi, xi) can be calculated using known parameters b0, b1 and given yi for the infor-
mative sampling. However, since we consider the non-ignorable non-response situation with non-
informative sampling scheme, this situation usually can not happen in practice. The parameters b0, b1
should be estimated from the data.

In this study we use the linear probability model (3.2) defined by Ep(πi|yi, xi) = b0 + b1yi. Since
Ep(πi|yi, xi) = 1/Es(wi|yi, xi) and Es(wi|yi, xi) ≈ wi from Pffeffermann and Sverchkov (2003) we have
1/wi ≈ b0 + b1yi. Therefore by plugging the estimated final sample weight ŵF

i obtained in Section 2.1
into wi, we have the following model.

1
ŵF

i

≈ b0 + b1yi. (3.7)

So using simple regression analysis we have the estimates of b0, b1.

3.3. Parameter estimation for super-population model

Three super-population models are considered in this study.

1. Normal distribution

fp (yi|xi) = N
(
β0 + βT

1 xi, σ
2
)
. (3.8)
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That is, yi = β0 + βT
1 xi + εi where βT

1 is a p-dimensional vector of parameters, εi
iid
∼ N(0, σ2) and

Varp(yi|xi) = σ2.

2. Gamma distribution with log-linear model

fp (yi|αi, µi) ∝ yα−1
i exp

(
−α

yi

µi

)
, (3.9)

where µi = Ep(yi|xi) and ln(µi) = β0 +βT
1 xi. That is, we use Γ(α, β∗) with β∗ = µi/α and so we have

Varp(yi|xi) = µ2
i /α.

3. Log-normal distribution with log-linear model

fp (yi|xi) = LN
(
β0 + β1xi, σ

2
)
, (3.10)

where µi = Ep(yi|xi) = exp(β0 + βT
1 xi + σ2/2) and Varp(yi|xi) = µ2

i (exp(σ2) − 1).

As used in Riddles et al. (2016), using the obtained data (xi, yi) and the known super-population
model, we can estimate µi and Varp(yi|xi).

3.4. Bias corrected propensity-score-adjusted (PSA) estimator

Bias corrected PSA estimator can be obtained based on the bias estimates and the PSA estimator
defined in (1.2). That is, the bias corrected PSA estimator is defined by

Ŷ
BC

=
1
N

∑
i∈s

ŵF
i

(
yi − b̂iasi

)
. (3.11)

In (3.11) we can use the final sample weights, ŵF(P)
i , ŵF(D)

i and ŵF(C)
i defined in Section 2 and b̂iasi

estimated according to the super-population model. Therefore, we have three bias corrected PSA
estimators depending on the final sample weight,

Ŷ
BC

P =
1
N

∑
i∈s

ŵF(P)
i

(
yi − b̂iasi

)
,

Ŷ
BC

D =
1
N

∑
i∈s

ŵF(D)
i

(
yi − b̂iasi

)
,

Ŷ
BC

C =
1
N

∑
i∈s

ŵF(C)
i

(
yi − b̂iasi

)
.

4. Simulation studies

To investigate the finite sample properties of the proposed method, we perform simulation studies.
In simulation, for x1i

iid
∼ Unif(100, 200) and x2i

iid
∼ Unif(30, 500) we generate a variable of interest yi

according to the following error distribution of the super-population model,

• Normal distribution: yi = β0 + β1x1i + β2x1i + εi, εi
iid
∼ N(0, 900).
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Here we use β0 = 10, β1 = 5 for univariate auxiliary variable case and β0 = 10, β1 = 5, β2 = 3 for
bivariate auxiliary variable case.

• Gamma distribution: yi
iid
∼ Γ(10, µi/10).

Here, we use µi = exp(0.01 + 0.03x1i) for univariate auxiliary variable case and µi = exp(0.01 +

0.03x1i + 0.002x2i) for bivariate auxiliary variable case.

• Log-normal distribution: yi
iid
∼ LN(µi, 0.1) Here we use µi = 0.01 + 0.03x1i for univariate auxiliary

variable case and µi = 0.01 + 0.03x1i + 0.002x2i for bivariate auxiliary variable case.

From N = 10, 000 population data, n = 500 samples are drawn using simple random sampling. In
order to remove the influence of outliers, 10,100 data are generated and then 100 largest valued data
are deleted in the samples of the gamma distribution and log-normal distribution.
We consider three response probability models,

• exponential response: pi = exp (a0 + a1yi)

• linear response: pi = b0 + b1yi

• logistic response: ln
(

pi
1−pi

)
= c0 + c1yi

For the linear response probability model, pi = b0 + b1yi, pi ∈ [0, 1], let πmin
y and πmax

y denote the
response probabilities corresponding to the minimum and maximum values of yi, respectively. Us-
ing given response probabilities, for instance (πmin

y , πmax
y ) = (0.9, 0.3), we calculate b0, b1 and then

calculate pi. We consider four cases of response probabilities,

• Case I (πmin
y , πmax

y ) = (0.9, 0.3),

• Case II : (πmin
y , πmax

y ) = (0.8, 0.3),

• Case III : (πmin
y , πmax

y ) = (0.3, 0.8),

• Case IV : (πmin
y , πmax

y ) = (0.3, 0.9).

Response data are obtained according to the calculated response probability pi. Similarly, the expo-
nential response probability model and the logistic response probability model are used to generate
response data.

Three PSA estimators, ŶP, ŶD and ŶC are calculated according to the sample weight estimation
method defined in (2.2), (2.3) and (2.4). In (2.3) and (2.4) for univariate case, the number of strata
L = 20 is used. For bivariate case, we use L1 = 5 for x1i and L2 = 4 for x2i. Also three bias corrected

PSA estimators, Ŷ
BC

P , Ŷ
BC

D and Ŷ
BC

C defined in section 3.4 are calculated. The performance of the
estimators is compared using the following comparison statistics; bias, absolute relative bias (ARB),
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Table 1: Results of PSA estimator with Normal distribution

Case Estimator Exponential Linear Logistic
BIAS ARB RMSE BIAS ARB RMSE BIAS ARB RMSE

I
ŶP –0.319 0.007 6.608 –0.889 0.007 6.597 –1.233 0.007 6.632

ŶD –1.557 0.003 2.518 –1.408 0.003 2.332 –1.521 0.003 2.370

ŶC –1.476 0.003 2.468 –1.360 0.002 2.304 –1.443 0.003 2.320

II
ŶP –0.530 0.007 6.606 –0.972 0.007 6.602 –1.096 0.007 6.629

ŶD –1.394 0.003 2.473 –1.301 0.003 2.334 –1.331 0.003 2.336

ŶC –1.323 0.003 2.433 –1.233 0.002 2.297 –1.261 0.002 2.297

III
ŶP 0.989 0.007 6.638 1.455 0.007 6.670 1.585 0.007 6.715

ŶD 1.436 0.003 2.446 1.427 0.003 2.374 1.468 0.003 2.389

ŶC 1.365 0.003 2.407 1.360 0.002 2.336 1.398 0.003 2.348

IV
ŶP 0.772 0.007 6.626 1.321 0.007 6.687 1.655 0.007 6.694

ŶD 1.636 0.003 2.523 1.564 0.003 2.418 1.590 0.003 2.393

ŶC 1.554 0.003 2.473 1.489 0.003 2.371 1.513 0.003 2.345

and root mean squared error (RMSE) defined by

Bias =
1
R

R∑
r=1

(
Ŷr − Yr

)
,

ARB =
1
R

R∑
r=1

∣∣∣∣∣Ŷr − Yr

∣∣∣∣∣
Yr

,

RMSE =

√√√
1
R

R∑
r=1

(
Ŷr − Yr

)2
.

Here, R = 1, 000 is used and the comparison statistics are calculated by generating a new popula-
tion for each iteration. This is to reduce the influence of the specific population generated, so the true
value of the rth repeat population mean is denoted as Ȳr.

Tables 1 to 3 contain the results of the PSA estimators. Table 1 shows the results when the super-
population model is linear and the error distribution is normal with three response probability models.
Even though there are some differences of response rates depending on the response probability cases,
in Case I and IV, the response rate of about 53 − 65% is obtained, and in Case II and III, the response

rate of about 50 − 56% is obtained. The bias of ŶP in Case I and II shows smaller than that in the
other cases and shows the smallest in the exponential response model and the largest in the logistic

response model. Also we have similar results of ŶP in terms of ARB and RMSE regardless of the
response model.

Comparing ŶP, ŶD and ŶC in terms of bias, in some cases ŶP gives better results than the others,

however ŶD and ŶC have good results in terms of ARB and RMSE with a very large difference. Also

comparing ŶD and ŶC , ŶC is superior to ŶD, although it is not a big difference in the results of ARB

and RMSE. In particular, ŶC is superior to ŶD in the bias results. Therefore, based on the results
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Table 2: Results of PSA estimator with Gamma distribution

Case Estimator Exponential Linear Logistic
BIAS ARB RMSE BIAS ARB RMSE BIAS ARB RMSE

I
ŶP –5.459 0.050 7.434 –5.288 0.048 7.161 –5.483 0.049 7.208

ŶD –4.626 0.038 5.398 –4.262 0.035 4.995 –4.219 0.035 4.896

ŶC –4.569 0.038 5.350 –4.217 0.035 4.957 –4.181 0.035 4.864

II
ŶP –5.394 0.050 7.483 –5.207 0.048 7.201 –5.415 0.049 7.334

ŶD –4.166 0.035 5.081 –3.927 0.033 4.781 –3.993 0.034 4.825

ŶC –4.121 0.035 5.045 –3.890 0.033 4.751 –3.958 0.033 4.797

III
ŶP 5.717 0.053 8.004 5.262 0.050 7.579 5.363 0.050 7.638

ŶD 4.380 0.037 5.472 4.228 0.036 5.244 4.359 0.037 5.338

ŶC 4.338 0.037 5.439 4.182 0.036 5.206 4.311 0.036 5.299

IV
ŶP 6.225 0.056 8.378 5.601 0.051 7.766 5.486 0.050 7.608

ŶD 4.885 0.041 5.852 4.676 0.039 5.543 4.794 0.039 5.568

ŶC 4.839 0.040 5.813 4.625 0.038 5.499 4.738 0.039 5.519

Table 3: Results of PSA estimator with Log-normal distribution

Case Estimator Exponential Linear Logistic
BIAS ARB RMSE BIAS ARB RMSE BIAS ARB RMSE

I
ŶP –5.720 0.050 7.771 –5.474 0.048 7.445 –5.646 0.048 7.472

ŶD –4.646 0.037 5.527 –4.257 0.034 5.071 –4.199 0.033 4.947

ŶC –4.587 0.036 5.478 –4.211 0.033 5.033 –4.162 0.033 4.915

II
ŶP –5.618 0.050 7.751 –5.380 0.048 7.459 –5.611 0.049 7.574

ŶD –4.154 0.034 5.198 –3.893 0.032 4.882 –3.976 0.032 4.907

ŶC –4.106 0.033 5.160 –3.855 0.032 4.852 –3.941 0.032 4.879

III
ŶP 5.767 0.051 8.147 5.298 0.048 7.712 5.428 0.048 7.775

ŶD 4.521 0.037 5.715 4.390 0.036 5.485 4.526 0.036 5.567

ŶC 4.477 0.037 5.680 4.341 0.035 5.445 4.475 0.036 5.525

IV
ŶP 6.323 0.054 8.511 5.736 0.050 7.991 5.605 0.049 7.814

ŶD 5.067 0.040 6.099 4.928 0.039 5.885 5.052 0.039 5.912

ŶC 5.018 0.040 6.057 4.873 0.039 5.838 4.992 0.039 5.860

of Table 1, we can conclude that the proposed response probability estimation method gives the best
results.

Table 2 shows the results when the super-population model is a log-linear model and the error
distribution is a gamma distribution. Also three response probability models are considered. In Case
I and II, the response rate of about 65 − 80% is obtained, and in Case III and IV, the response rate
of about 40 − 45% is obtained. This result comes from the asymmetry of the gamma distribution.
Investigating the results of Table 2, one can see that large biases occur in all estimators and the bias

has a very large effect on the RMSE. As shown in Table 1, ŶC is the best through all comparison
statistics results in Table 2.

Table 3 shows the results where the super-population model is a log-linear model and the error
distribution is log-normal with three response probability models. The response rate is very similar
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Table 4: Results of bias corrected PSA estimator using linear response probability model

Case Estimator Normal Gamma Log-normal
BIAS ARB RMSE BIAS ARB RMSE BIAS ARB RMSE

I
Ŷ

BC

P 0.459 0.007 6.569 –2.442 0.037 5.614 –1.577 0.035 5.601

Ŷ
BC

D –0.150 0.002 1.936 –1.320 0.021 3.216 –0.168 0.021 3.386

Ŷ
BC

C –0.100 0.002 1.933 –1.261 0.020 3.196 –0.103 0.021 3.390

II
Ŷ

BC

P 0.251 0.007 6.546 –2.691 0.038 5.836 –1.926 0.037 5.804

ŶDBC –0.162 0.002 2.007 –1.270 0.021 3.282 –0.179 0.022 3.587

Ŷ
BC

C –0.091 0.002 2.004 –1.221 0.021 3.268 –0.126 0.022 3.593

III
Ŷ

BC

P 0.233 0.007 6.539 2.893 0.039 6.139 1.416 0.035 5.683

Ŷ
BC

D 0.284 0.002 1.971 1.831 0.023 3.656 0.513 0.021 3.481

Ŷ
BC

C 0.213 0.002 1.966 1.781 0.023 3.633 0.458 0.021 3.475

IV
Ŷ

BC

P –0.020 0.007 6.589 2.947 0.039 6.087 1.452 0.034 5.643

Ŷ
BC

D 0.293 0.002 1.919 1.954 0.023 3.620 0.577 0.021 3.394

Ŷ
BC

C 0.214 0.002 1.913 1.899 0.023 3.592 0.516 0.021 3.385

Table 5: Results of PSA estimator using linear response probability model with bivariate auxiliary variable

Case Estimator Normal Gamma Log-normal
BIAS ARB RMSE BIAS ARB RMSE BIAS ARB RMSE

I
ŶP 1.586 0.010 19.203 –9.213 0.049 12.677 –9.476 0.048 13.207

ŶD –4.158 0.004 6.968 –8.382 0.040 9.918 –8.657 0.040 10.389

ŶC –0.528 0.003 5.591 –7.198 0.035 8.967 –7.417 0.035 9.415

II
ŶP 0.545 0.010 18.977 –9.179 0.050 13.058 –9.274 0.048 13.174

ŶD –4.149 0.004 7.283 –7.679 0.038 9.559 –7.875 0.037 9.750

ŶC –0.940 0.003 6.005 –6.734 0.034 8.836 –6.898 0.033 8.997

III
ŶP 0.504 0.010 19.206 9.513 0.052 13.776 9.879 0.051 14.212

ŶD 3.866 0.004 7.225 9.326 0.045 11.43 9.674 0.044 11.864

ŶC 0.723 0.003 6.123 8.061 0.040 10.383 8.343 0.039 10.775

IV
ŶP –0.444 0.010 19.037 10.069 0.053 14.055 10.624 0.054 14.866

ŶD 4.652 0.004 7.478 10.249 0.048 12.032 10.894 0.049 12.930

ŶC 1.078 0.003 5.911 8.828 0.042 10.823 9.378 0.043 11.640

to the result of gamma distribution. Also in Table 3, ŶC is the best through all comparison statistics
results.

Table 4 shows the results of the bias corrected PSA estimator using the linear response probability
model. To obtain the bias corrected PSA estimator, known response probability model and known
super-population model are required. In this simulation, we use that the error distribution of the linear
super-population model is normal and the response probability model is linear. Also we consider
gamma and log-normal distributions as the error distribution of the log-linear super-population model.

Through the results, Ŷ
BC

P gives the worst results in terms of ARB and RMSE and even the results
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Table 6: Results of bias corrected PSA estimator using linear response probability model with bivariate
auxiliary variable

Case Estimator Normal Gamma Log-normal
BIAS ARB RMSE BIAS ARB RMSE BIAS ARB RMSE

I
Ŷ

BC

P 2.064 0.010 19.253 –3.554 0.037 9.936 –3.053 0.036 10.351

Ŷ
BC

D –3.728 0.004 6.728 –2.883 0.026 6.851 –2.369 0.026 7.366

Ŷ
BC

C –0.079 0.003 5.583 –1.256 0.024 6.535 –0.588 0.026 7.331

II
Ŷ

BC

P 0.980 0.010 19.001 –4.258 0.040 10.670 –3.670 0.037 10.613

ŶDBC –3.769 0.004 7.073 –2.698 0.026 6.975 –2.125 0.026 7.414

Ŷ
BC

C –0.542 0.003 5.964 –1.398 0.025 6.746 –0.698 0.025 7.516

III
Ŷ

BC

P 0.076 0.010 19.200 5.367 0.042 11.326 3.483 0.037 10.535

Ŷ
BC

D 3.482 0.004 7.031 5.319 0.032 8.640 3.518 0.027 7.824

Ŷ
BC

C 0.322 0.003 6.102 3.950 0.029 7.851 2.033 0.026 7.273

IV
Ŷ

BC

P –0.915 0.010 19.062 5.297 0.041 11.100 3.627 0.038 10.786

Ŷ
BC

D 4.228 0.004 7.228 5.566 0.032 8.628 4.063 0.029 8.152

Ŷ
BC

C 0.635 0.003 5.862 4.035 0.029 7.735 2.387 0.026 7.429

are worse than those of ŶC in the linear response probability model of Table 2. Comparing Ŷ
BC

D and

Ŷ
BC

C , we can see that Ŷ
BC

D and Ŷ
BC

C have similar results in terms of ARB and RMSE. However, the bias

of Ŷ
BC

C is smaller than that of Ŷ
BC

D . Also comparing ŶC and Ŷ
BC

C , we have that Ŷ
BC

C have better results
with a very large difference. Therefore, it is very reasonable to use a bias corrected PSA estimator
when the error distribution is known and the response probability model is linear. Of course, the bias
corrected PSA estimator can be applied if bias is known.

Table 5 and Table 6 show the results of bivariate auxiliary variable case. The response rates are
similar to the univariate variable cases. In Table 5, the result of the PSA estimator, it can be seen
that the bias of ŶP is relatively small in the normal super-population result. However, the biases of

ŶP in the gamma distribution and log-normal distribution are larger than those of other estimators.

Also, in terms of ARB and RMSE, ŶP gives inferior results when compared to other estimators, so

it is not good to use ŶP for a bivariate auxiliary variable case. Comparing ŶD and ŶC in the normal

super-population result, it can be seen that the bias of ŶC is smaller. In addition, ŶC shows good
results in terms of ARB and RMSE. This pattern of results also can be seen in the gamma distribution

and log-normal distribution. Therefore, we conclude that ŶC gives the best result when using PSA
estimator in the bivariate auxiliary variable case.

Table 6 shows the results of the bias corrected PSA estimator. As in the case of univariate auxiliary

variable, Ŷ
BC

C gives the best result in terms of all comparison statistics in the case of bivariate auxiliary

variable. Therefore, it is appropriate to use Ŷ
BC

C when using the bias corrected PSA estimator.
By comparing the results of Table 5 and Table 6, the effect of bias correction can be confirmed. The

effect of bias correction of Ŷ
BC

P can be seen in the gamma distribution and the log-normal distribution



274 Hee Young Chung, Key-Il Shin

except for the normal distribution. On the other hand, in the results of Ŷ
BC

D and Ŷ
BC

C , the bias correction

effect can be seen in all distributions. Also the bias correction effect of Ŷ
BC

C is seen for all distributions,
especially the gamma and log-normal distributions. Therefore, it can be confirmed through simulation
studies that the bias corrected PSA estimator gives good results when a known super-population model
is used in the linear response probability model.

5. Conclusion

Recently, a lot of non-ignorable non-response has occurred in sample survey and several studies have
been conducted to properly deal with it. Non-ignorable non-response is not easy to deal with because
it causes bias. In particular, in order to properly handle non-ignorable non-responses, accurate esti-
mation of response probability plays an important role. However, since the response probability is
a function of the variable of interest, it is not easy to accurately estimate the response probability in
practice. Therefore, practically the method of estimating the response probability should use avail-
able auxiliary variables. In this study we propose a new response probability estimation method using
available auxiliary variables. It is confirmed that the proposed method provides better result than the
existing methods and the bias corrected PSA estimator produces significantly better results.

Here we note that the results in this study are obtained using a linear response probability model
with known super population models. A model misspecification of the response probability model is
a big concern and the linear model may be neither well motivated nor appropriate in practice. Also the
super population model plays an important role and a model missspecification of the super population
model is also concerned. Therefore, it is necessary to study a method that can be used for an arbitrary
unknown response probability model and an arbitrary unknown super-population model.
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