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Abstract

Although the response model has been frequently applied to nonresponse weighting adjust-

ment or imputation, the estimation under callbacks has been relatively underdeveloped in the

response model. The estimation method using the response probability is developed under call-

backs. A replication method for the estimation of the variance of the proposed estimation is

also developed. Since the true response probability is usually unknown, we study the estimation

of the response probability. Finally, we propose an estimator under callbacks using the ratio

imputation as well as the response probability. The simulation study illustrates our techniques.
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1 Introduction

Generally, almost all surveys rely on callbacks to raise the response rate of persons who are not at
home. The technique of callback and the estimation after callbacks have been considered numerous
times by many survey researchers. A method of selecting subsamples from persons not at home and
the estimation of double sampling were first considered by Hansen and Hurwitz (1946). Deming
(1953) studied the estimation of the population mean when responses are collected until the i-th
callback attempt. Groves (1989) provided an excellent summary of these approaches. Recently, El-
liott, Little and Lewitzky (2000) considered the subsampling callback, where an efficient subsampling
strategy considering variance and cost from the repeated callback attempts was established.

The estimators are relatively underdeveloped in the response model under callbacks though the
response model has been applied to nonresponse weighting adjustment or imputation. There is
vast literature on nonresponse weighting adjustment or imputation under uniform or non-uniform
response model. See, for example, Rosenbaum (1987), Rao and Shao (1992), Robins, Rotnitzky and
Zhao (1994), Rao and Sitter (1995), Lipsitz, Ibrahim and Zhao (1999) and Shao and Steel (1999).

In this Section, we propose an estimator using the response probability and an auxiliary variable
in the response model under callbacks. We prove the unbiasedness and the efficiency of the proposed
estimator under the assumption that we know the true response probability. We also suggest a
replication variance estimator of the estimator which satisfies the consistency under infinite sample
size.

Since the response probability is usually unknown, however, we consider an estimator using the
estimated response probability instead of the true response probability. For the estimation of the
response probability, one can refer to Ekholm and Laaksonen (1991) and Iannacchione (2003). We
also propose a consistent replication variance estimator of this estimator.

This Section is organized as follows. In Section 2, we introduce an estimator using the true
response probability and an auxiliary variable under callbacks and calculate the expectation and the
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variance of the estimator. In Section 3, we propose a replication variance estimator of the estimator of
Section 2. In Section 4, we consider the estimation of the response probability assuming the logistic
response model, where the estimator and its variance estimator corresponding to the estimated
response probability are also given. The numerical evaluation of the estimators in this paper is
performed through a simulation study in Section 5. Finally, we remark another estimator using the
response probability and the imputation under callbacks in Section 6.

2 Estimation using response probability

Let the population total be Y =
∑N

i=1 yi and the population mean be Ȳ = N−1
∑N

i=1 yi, where N

is the population size and yi is the value of the target variable of unit i. Let Ŷn be an estimator of
the population total Y defined by Ŷn =

∑
i∈A wiyi, where n is the sample size, wi is the sampling

weight of unit i and A = {1, 2, . . . , n} is the set of indices of the sample.
We define the response indicator function under the first survey as

Ri =

{
1, if unit i responds
0, otherwise

for i ∈ A. Let πi = P (Ri = 1|i ∈ A) be the response probability of sample unit i under the first
survey. We consider only one-step callback in this paper. We write the response indicator function
under callback as

Ti =

{
1, if unit i responds
0, otherwise

for i ∈ ANR, where ANR = {i : Ri = 0, i ∈ A} is the set of the indices of nonresponding units. Let
pi = Pr(Ti = 1|i ∈ ANR) be the response probability of sample unit i for i ∈ ANR under callback.
We assume that Ri and Ti are ignorable such that πi and pi depend on an auxiliary variable zi but
not on yi. In this section we also assume that all πi and pi are known priori.

We suppose that there is another auxiliary variable xi that is related with the study variable yi

and can be observed throughout the sample. We now introduce some preliminary estimators. Let
ỸR =

∑n
i=1 wiπ

−1
i Riyi and ỸT =

∑n
i=1 wi(1− πi)−1p−1

i (1−Ri)Tiyi. For another auxiliary variable
xi, we define X̃T =

∑n
i=1 wi(1 − πi)−1p−1

i (1 − Ri)Tixi and X̃NR =
∑n

i=1 wi(1 − πi)−1(1 − Ri)xi.
The estimator ỸR is estimated with data of the first survey and πi. The estimators ỸT and X̃T are
estimated using data under callback and the response probabilities. Using the ratio r̃1 = X̃−1

T ỸT ,
we define

ỸI = ỸT + r̃1(X̃NR − X̃T )

and
φ̃ = [V ar(ỸR) + V ar(ỸI)− 2Cov(ỸR, ỸI)]−1[V ar(ỸI)− Cov(ỸR, ỸI)]. (1)

We know that the estimator ỸI is regression-type or ratio-type estimator using response proba-
bilities. We also think various estimator except the ratio r̃1 = X̃−1

T ỸT .

Then, our proposed estimator is defined as

ỸC = φ̃ỸR + (1− φ̃)ỸI .
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Note that the variance of kỸR + (1− k)ỸI is minimized at k = φ̃. We adopt the extended definition
of the response indicator function introduced by Fay (1991). Conceptually, the response indicator
functions Ri and Ti can be extended to the entire population.

In this section we assume the following conditions:

(A1) A sequence of finite populations and samples are defined as in Isaki and Fuller (1982). The
finite populations satisfy that for some τ > 0

N−1
N∑

i=1

θ2+τ
i = O(1),

where θi represents yi, xi and zi. The sampling mechanism satisfies

E(Ŷn) = Y.

(A2) For nonnegative constants C1, C2 and C3,

C1 < πi < C2

and

pi > C3.

(A3) The response indicator functions Ri and Ti are mutually independent, respectively, such that

P (Ri = 1, Rj = 1) = P (Ri = 1)P (Rj = 1)

and

P (Ti = 1, Tj = 1) = P (Ti = 1)P (Tj = 1)

for different i and j.

(A4) The sampling mechanism satisfies that for nonnegative constants D1, D2, D3 and D4

D1 < max
1≤i≤N

(N−1nwi) < D2

and

D3 < N−2nV ar(Ŷn) < D4,

where the variance is calculated under the sampling mechanism.

In the following theorem we deal with the expectation and the variance of our proposed estimator
ỸC .

Theorem 2.1 Under the assumptions (A1)-(A4),

E(ỸC) = Y + o(n−1/2N) (2)
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and
V ar(ỸC) = V ar(Ŷn) + (E1 + E2 + 2E3)−1(E1E2 − E2

3) + o(n−1N2), (3)

where

E1 = E

[
n∑

i=1

w2
i (π−1

i − 1)y2
i

]
,

E2 = E

[
n∑

i=1

w2
i (1− πi)−1(πiy

2
i + (p−1

i − 1)(yi − rxi)2)

]
,

E3 = E

[
n∑

i=1

w2
i y2

i

]

and r = X−1Y for X =
∑N

i=1 xi.

Proof. Note that under (A1), (A3) and (A4),

E[(X̃NR −X)2] = V ar(X̂n) + E[
n∑

i=1

w2
i (π−1

i − 1)−1x2
i ]

= O(n−1N2)

and

E[(X̃T −X)2] = V ar(X̂n) + E[
n∑

i=1

w2
i (1− πi)−1(πi + p−1

i − 1)x2
i ]

= O(n−1N2),

where X̂n =
∑n

i=1 wixi. Similarly, we also obtain that

ỸT − Y = OP (n−1/2N).

Then, by Taylor’s expansion, we have

r̃1 − r = X−1[(ỸT − Y )− r(X̃T −X)] + oP (n−1/2)

= OP (n−1/2) (4)

and

ỸI = ỸT + (r̃1 − r)(X̃NR − X̃T ) + r(X̃NR − X̃T )

= ỸT + r(X̃NR − X̃T ) + oP (n−1/2N).

Observe that

ỸC − Ŷn = φ̃(ỸR − Ŷn) + (1− φ̃)[(ỸT − Ŷn) + r(X̃NR − X̃T )] + oP (n−1/2N).

This, together with (A1), implies (2).
Let Ỹ ′

I = ỸT + r(X̃NR − X̃T ). By definition of φ̃, we have

V ar(ỸC) = [V ar(ỸR) + V ar(Ỹ ′
I )− 2Cov(ỸR, Ỹ ′

I )]−1[V ar(ỸR)V ar(Ỹ ′
I )

−Cov(ỸR, Ỹ ′
I )2] + o(n−1N2)

4



since ỸI − Ỹ ′
I = oP (n−1/2N). Observe that from (A3)

V ar(ỸR) = V ar(Ŷn) + E[
n∑

i=1

w2
i (π−1

i − 1)y2
i ],

V ar(Ỹ ′
I ) = V ar(Ŷn) + E[

n∑

i=1

w2
i (1− πi)−1(πiy

2
i + (p−1

i − 1)(yi − rxi)2)]

and

Cov(ỸR, Ỹ ′
I ) = V ar(Ŷn)− E[

n∑

i=1

w2
i y2

i ].

Thus, the result (3) follows immediately. Q.E.D.

3 Variance estimation using known response probability

In this section we propose a method of estimating the variance of the estimator when we know the
response probability. Note that the variance must be estimated to calculate the efficiency of the
proposed estimator. We consider the replication methods such as jackknife, balanced half samples
and bootstrap since it is well known that replication methods are good to estimate the variances of
complex estimators.

First, we illustrate a replication variance estimator for Ŷn. Let an estimator of V ar(Ŷn) be

V̂ (Ŷn) =
L∑

k=1

ck(Ŷ (k)
n − Ŷn)2,

where L is the number of replications, ck is a factor associated with the kth replication determined
by the replication method and Ŷ

(k)
n is the kth estimator of Y based on the observations included in

the kth replication, that is,

Ŷ (k)
n =

n∑

i=1

w
(k)
i yi,

where w
(k)
i is the replication weight for the ith unit in the kth replication. For example, if inclusion

probability is N−1n and wi = n−1N , then the standard jackknife variance estimator V̂ (Ŷn) is defined
by L = n, ck = (1−N−1n)n−1(n− 1), w

(k)
i = (n− 1)−1nwi for i 6= k and w

(k)
k = 0.

We suggest a replication estimator for the variance of ỸC by

V̂ (ỸC) =
L∑

k=1

ck(Ỹ (k)
C − ỸC)2,

where
Ỹ

(k)
C = φ̃Ỹ

(k)
R + (1− φ̃)Ỹ (k)

I .

Here, analogously as before, Ỹ
(k)
R =

∑n
i=1 w

(k)
i πi

−1Riyi and Ỹ
(k)
I = Ỹ

(k)
T + r̃

(k)
1 (X̃(k)

NR − X̃
(k)
T ) for

r̃
(k)
1 = Ỹ

(k)
T /X̃

(k)
T , Ỹ

(k)
T =

∑n
i=1 w

(k)
i (1−πi)−1pi

−1(1−Ri)Tiyi, X̃
(k)
T =

∑n
i=1 w

(k)
i (1−πi)−1pi

−1(1−
Ri)Tixi and X̃

(k)
NR =

∑n
i=1 w

(k)
i (1− πi)−1(1−Ri)xi. Note that (k) denotes the kth replication.
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We assume that the variance of a linear estimator of the total is a quadratic function of y, that
is,

N−2nV ar(Ŷn) =
N∑

i=1

N∑

j=1

Ωijyiyj , (5)

where the coefficients Ωij satisfy
max

1≤i≤N
Ωii = O(N−1) (6)

and
N∑

i=1

|Ωij | = O(N−1). (7)

For example, the simple random sampling with wi = n−1N satisfies (6) and (7) because

Ωij =

{
N−1(1−N−1n) if i = j

−N−1(N − 1)−1(1−N−1n) if i 6= j .

In order to establish the consistency of V̂ (ỸC), we first prove the consistency of the variance
estimator of ỸR in the following lemma.

Lemma 3.1 Suppose that the conditions (A1)-(A4) are satisfied. We assume that for any y with
bounded fourth moment,

E[(V ar(Ŷn)−1V̂ (Ŷn)− 1)2] = o(1), (8)

where the expectation is calculated under the given sampling mechanism. Assume also that

N−1n = o(1). (9)

Then,

V̂ (ỸR) =
L∑

k=1

ck(Ỹ (k)
R − ỸR)2 = V ar(ỸR) + oP (n−1N2). (10)

Proof. From (A4) and (8),

V̂ (ỸR) = V ar(ỸR|R1, . . . , RN ) + oP (n−1N2).

From (9),

V ar[E(ỸR|R1, . . . , RN )] = o(n−1N2).

Then, (10) follows immediately if we prove

V ar[N−2nV ar(ỸR|R1, . . . , RN )] = o(1). (11)

It is observed that from (5)

V ar[N−2nV ar(ỸR|R1, . . . , RN )]

=
N∑

i=1

N∑

j=1

N∑

k=1

N∑
m=1

ΩijΩkmCov(yπiyπj , yπkyπm),
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where yπi = π−1
i Riyi and the covariances are taken with respect to Ri’s. Since Ri’s are independent,

we can see that

V ar[N−2nV ar(ỸR|R1, . . . , RN )]

=
N∑

i=1

N∑

j=1

(Ω2
ij + ΩijΩji)V ar(yπiyπj)

≤ 2 max
1≤i,j≤N

V ar(yπiyπj) max
1≤i,j≤N

|Ωij |
N∑

i=1

N∑

j=1

|Ωij |.

From (A1) with τ > 2 and (A2), max1≤i,j≤N V ar(yπiyπj) = O(1). By (6) and the nonnegative
definiteness of Ω = (Ωij), max1≤i,j≤N |Ωij | = O(N−1). These, together with (7), imply (11).
Q.E.D.

Secondly, we deal with the variance estimator for ỸI . Here, an additional condition is listed.

(A5) For the replication factors
max

1≤k≤L
c−1
k = O(L)

and
E[{ck(Ŷ (k)

n − Ŷn)2}2] < CyL−2{V ar(Ŷn)}2

for some constant Cy

Lemma 3.2 Assume the conditions (A1)-(A5), (8) and (9). Then,

V̂ (ỸI) =
L∑

k=1

ck(Ỹ (k)
I − ỸI)2 = V ar(ỸI) + oP (n−1N2). (12)

Proof. Split Ỹ
(k)
I − ỸI as

Ỹ
(k)
I − ỸI = (Ỹ (k)

I − Ỹ
′(k)
I ) + (Ỹ ′(k)

I − Ỹ ′
I ) + (Ỹ ′

I − ỸI),

where Ỹ
′(k)
I = Ỹ

(k)
T + r(X̃(k)

NR − X̃
(k)
T ). Observe that

(Ỹ (k)
I − Ỹ

′(k)
I ) + (Ỹ ′

I − ỸI)

= (r̃(k)
1 − r̃1){(X̃(k)

NR − X̃NR)− (X̃(k)
T − X̃T )}

+(r̃1 − r){(X̃(k)
NR − X̃NR)− (X̃(k)

T − X̃T )}+ (r̃(k)
1 − r̃1)(X̃NR − X̃T )

= oP (n−1/2N)

since X̃
(k)
NR − X̃NR = OP (n−1/2N), X̃

(k)
T − X̃T = OP (n−1/2N) and

r̃
(k)
1 − r̃1 = X̃−1

T {(Ỹ (k)
T − ỸT )− r̃(X̃(k)

T − X̃T )}+ oP (n−1/2) (13)

= OP (n−1/2).

7



which are consequences of (A3)-(A5), (4) and the fact that X̃NR − X̃T = OP (n−1/2N). Then, from
(8) and (A5),

V̂ (ỸI) =
L∑

k=1

ck(Ỹ ′(k)
I − Ỹ ′

I )2 + oP (n−1N2)

= V ar(Ỹ ′
I |T1, . . . , TN , R1, . . . , RN ) + oP (n−1N2).

If we prove
V ar[E(Ỹ ′

I |T1, . . . , TN , R1, . . . , RN )] = o(n−1N2) (14)

and
V ar[N−2nV ar(Ỹ ′

I |T1, . . . , TN , R1, . . . , RN )] = o(1), (15)

then we have
V ar(Ỹ ′

I |T1, . . . , TN , R1, . . . , RN ) = V ar(Ỹ ′
I ) + oP (n−1N2),

which implies (12) since ỸI − Ỹ ′
I = oP (n−1/2N). Note that (14) results from (9).

Now we deal with (15). Observe that

Ỹ ′
I =

n∑

i=1

wiui +
n∑

i=1

wiyri := Ûn + Ŷrn,

where ui = (1−πi)−1(1−Ri)(p−1
i Ti−1)(yi−rxi) and yri = (1−πi)−1(1−Ri)yi. It suffices to show

V ar[N−2nCov(Ŵn, Ŵ ′
n|T1, . . . , TN , R1, . . . , RN )] = o(1), (16)

for three cases of Ŵn = Ŵ ′
n = Ûn, Ŵn = Ŵ ′

n = Ŷrn and Ŵn = Ûn, Ŵ ′
n = Ŷrn. Here, we note that

similar arguments in Lemma 3.1 and the conditions assumed in this lemma lead to (16) in each case.
Q.E.D.

In the following theorem, the consistency of the variance estimator V̂ (ỸC) is established.

Theorem 3.1 Under the same conditions as in Lemma 3.2,

V̂ (ỸC) = V ar(ỸC) + oP (n−1N2). (17)

Proof. Observe that

L∑

k=1

ck(Ỹ (k)
C − ỸC)2

= φ̃2
L∑

k=1

ck(Ỹ (k)
R − ỸR)2 + (1− φ̃)2

L∑

k=1

ck(Ỹ (k)
I − ỸI)2

+2φ̃(1− φ̃)
L∑

k=1

ck(Ỹ (k)
R − ỸR)(Ỹ (k)

I − ỸI).
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Using the similar arguments in Lemma 3.2, we obtain that

L∑

k=1

ck(Ỹ (k)
R + Ỹ

(k)
I − ỸR − ỸI)2

=
L∑

k=1

ck(Ỹ (k)
R + Ỹ

′(k)
I − ỸR − Ỹ ′

I )2 + oP (n−1N2).

By (A4) and (8),

L∑

k=1

ck(Ỹ (k)
R + Ỹ

′(k)
I − ỸR − Ỹ ′

I )2

= V ar(ỸR + Ỹ ′
I |T1, . . . , TN , R1, . . . , RN ) + oP (n−1N2)

= V ar(ỸR + ỸI) + oP (n−1N2),

where the same steps in Lemmas 3.1 and 3.2 and the fact that ỸI − Ỹ ′
I = oP (n−1/2N) have been

used for the last equality. This, together with (10) and (12), implies that

L∑

k=1

ck(Ỹ (k)
R − ỸR)(Ỹ (k)

I − ỸI) = Cov(ỸR, ỸI) + oP (n−1N2),

which implies (17). Q.E.D.

4 Estimation using estimated response probability

In most practical situations, it is impossible to know the response probability and the weight. In
this section, we estimate the response probability and the weight. We assume the parametric logistic
model for the response probability:

πi = π(zi;α) = (1 + exp(−zT
i α))−1,

where zi is the value of an auxiliary variable for unit i and α = (α1, . . . , αp)T . The response
probability pi under callback is assumed to be a constant p. Let π̂i = π(zi; α̂) be the estimated
response probability, where α̂ satisfies

n1/2(α̂− α) = n−1/2
n∑

i=1

H(zi, Ri; α) + oP (1), (18)

where E[H(zi, Ri; α)] = 0 and E[H(zi, Ri;α)H(zi, Ri; α)T ] is positive definite (cf. Kim and Park,
2006). For example, the logistic regression model defined by πi = {1 + exp (−α1 − α2zi)}−1 satisfies

H (zi, Ri; α) = n {I (α1, α2)}−1 (Ri − πi) (1, zi)
T

and

I (α1, α2) = E

{
n∑

i=1

πi (1− πi) (1, zi)
T (1, zi)

}
.
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The response probability pi is estimated by p̂ = R∗−1T ∗, where R∗ =
∑n

i=1 wi(1 − Ri) and
T ∗ =

∑n
i=1 wi(1−Ri)Ti.

The estimators with the estimated response probabilities plugged-in are defined analogously as
before. We define ŶR =

∑n
i=1 wiπ̂

−1
i Riyi and ŶI = ŶT + r̂1(X̂NR − X̂T ), where ŶT =

∑n
i=1 wi(1 −

π̂i)−1p̂−1(1−Ri)Tiyi, X̂T =
∑n

i=1 wi(1− π̂i)−1p̂−1(1−Ri)Tixi, X̂NR =
∑n

i=1 wi(1− π̂i)−1(1−Ri)xi

and r̂1 = X̂−1
T ŶT . We discuss the asymptotic properties of ŶR and ŶI in the following Lemma.

Lemma 4.1 Assume the same conditions as in Lemma 3.2. Let us define ΓR =
∑N

i=1 πi(∂π−1
i /∂α)yi,

ΓY =
∑N

i=1 pyi, ΓX =
∑N

i=1 pxi and ΓT =
∑N

i=1(1− πi)(∂(1− πi)−1/∂α)yi. Then,

ŶR − ỸR = (α̂− α)T ΓR + oP (n−1/2N) (19)

and

ŶI − ỸI = T̄−1[(R∗ − R̄)− p−1(T ∗ − T̄ )](ΓY − rΓX)

+(α̂− α)T ΓT + oP (n−1/2N), (20)

where T̄ =
∑N

i=1(1− πi)p, R̄ =
∑N

i=1(1− πi).

Proof. By (18) and Taylor’s expansion,

π̂−1
i − π−1

i = (α̂− α)T (∂π−1
i /∂α) + oP (n−1/2).

Then, using (A1), (A3) and (A4), we obtain (19). Observe that

ŶI − ỸI = ŶT − ỸT + r̂1[(X̂NR − X̃NR)− (X̂T − X̃T )]

+(r̂1 − r̃1)(X̃NR − X̃T ).

By Taylor’s expansion and the assumed conditions,

(1− π̂i)−1 − (1− πi)−1 = (α̂− α)T (∂(1− πi)−1/∂α) + oP (n−1/2)

and

p̂−1 − p−1 = T̄−1[R∗ − R̄− p−1(T ∗ − T̄ )] + oP (n−1/2).

Then, we have

ŶT − ỸT

= T̄−1[R∗ − R̄− p−1(T ∗ − T̄ )]ΓY + (α̂− α)T ΓT + oP (n−1/2N)

and

X̂T − X̃T

= T̄−1[R∗ − R̄− p−1(T ∗ − T̄ )]ΓX + (α̂− α)T ΓTX + oP (n−1/2N),

where ΓTX =
∑N

i=1(1− πi)(∂(1− πi)−1/∂α)xi. We also obtain that

X̂NR − X̃NR = (α̂− α)T ΓTX + oP (n−1/2N)
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and

r̂1 − r̃1 = X̃−1
T [(ŶT − ỸT )− r̃(X̂T − X̃T )] + oP (n−1/2).

These, together with (4) and the fact that X̃NR − X̃T = OP (n−1/2N), immediately imply (20).
Q.E.D.

Let π̂
(k)
i = π(zi; α̂(k)) be the k-th replicate of π̂i, where α̂(k) = (α̂(k)

1 , · · · , α̂(k)
p )T is the k-th

replicate of α̂ satisfying

L∑

k=1

ck(α̂(k) − α̂)(α̂(k) − α̂)T = Σα + oP (n−1) (21)

for Σα = E[(α̂ − E(α̂))(α̂ − E(α̂))T ]. Note that the replication variance estimators can be defined
analogously as before, where the response probabilities are replaced by the k-th replicates of the
estimated ones. For example,

V̂ (ŶR) =
L∑

k=1

ck(Ŷ (k)
R − ŶR)2,

where Ŷ
(k)
R =

∑n
i=1 w

(k)
i π̂

(k)−1
i Riyi. The covariance of ŶR and ŶI is estimated by

Ĉ(ŶR, ŶI) =
L∑

k=1

ck(Ŷ (k)
R − ŶR)(Ŷ (k)

I − ŶI),

where Ŷ
(k)
I = Ŷ

(k)
T + r̂

(k)
1 (X̂(k)

NR− X̂
(k)
T ) with Ŷ

(k)
T , X̂

(k)
T , X̂

(k)
NR and r̂

(k)
1 analogously defined using the

k-th replicates of the estimated response probabilities. Finally, the proposed estimator is given by

ŶC = φ̂ŶR + (1− φ̂)ŶI

for φ̂ = [V̂ (ŶR) + V̂ (ŶI)− 2Ĉ(ŶR, ŶI)]−1[V̂ (ŶI)− Ĉ(ŶR, ŶI)].
We discuss the consistency of V̂ (ŶR) in the following Lemma.

Lemma 4.2 Assume the conditions of Lemma 3.2. Assume also that

L∑

k=1

ck(Ŷ (k)
n − Ŷn)(α̂(k)

l − α̂l) = Cov(Ŷn, α̂l) + oP (n−1N) (22)

for 1 ≤ l ≤ p. Then,

Ŷ
(k)
R − ŶR = Ỹ

(k)
R − ỸR + (α̂(k) − α̂)T ΓR + oP (n−1/2N) (23)

and
V̂ (ŶR) = V ar(ŶR) + oP (n−1N2). (24)

Proof. Write Ŷ
(k)
R − ŶR as

Ŷ
(k)
R − ŶR = (Ŷ (k)

R − Ỹ
(k)
R ) + (Ỹ (k)

R − ỸR) + (ỸR − ŶR).

11



From (18) and (21),

π̂
(k)−1
i − π̂−1

i = (α̂(k) − α̂)T (∂π−1
i /∂α) + oP (n−1/2)

which, together with the assumed conditions, implies that

(Ŷ (k)
R − Ỹ

(k)
R ) + (ỸR − ŶR) = (α̂(k) − α̂)T ΓR + oP (n−1/2N)

and, hence, (23). Observe that by (A5)

L∑

k=1

ck(Ŷ (k)
R − ŶR)2 =

L∑

k=1

ck(Ỹ (k)
R − ỸR)2 +

L∑

k=1

ck[(α̂(k) − α̂)T ΓR]2

+2
L∑

k=1

ck(Ỹ (k)
R − ỸR)[(α̂(k) − α̂)T ΓR] + oP (n−1N2).

From (18) and (22),

L∑

k=1

ck(Ỹ (k)
R − ỸR)(α̂(k)

l − α̂l)ΓRl

= Cov(ỸR, n−1ΓRl

n∑

i=1

Hli|R1, · · · , RN ) + oP (n−1N2)

where ΓRl is the lth element of ΓR for l = 1, . . . , p. From (9), we have

Cov[E(ỸR|R1, · · · , RN ), E(n−1ΓRl

n∑

i=1

Hli|R1, · · · , RN )] = o(n−1N2).

The similar arguments in Lemma 1 lead to

L∑

k=1

ck(Ỹ (k)
R − ỸR)[(α̂(k) − α̂)T ΓR] = Cov(ỸR, (α̂− α)T ΓR) + oP (n−1N2),

which, together with (10), (19) and (21), implies (24). Q.E.D.

We state the following lemma regarding the consistency of V̂ (ŶI) without proof since the technical
details resembles that in Lemma 4.2.

Lemma 4.3 Assume the same conditions as in Lemma 4.2. Then,

Ŷ
(k)
I − ŶI

= (Ỹ (k)
I − ỸI) + T̄−1[(R∗(k) −R∗)− p−1(T ∗(k) − T ∗)](ΓY − rΓX)

+(α̂(k) − α̂)T ΓT + oP (n−1/2N) (25)

and

V̂ (ŶI) =
L∑

k=1

ck(Ŷ (k)
I − ŶI)2 = V ar(ŶI) + oP (n−1N2), (26)

where R∗(k) =
∑n

i=1 w
(k)
i (1−Ri) and T ∗(k) =

∑n
i=1 w

(k)
i (1−Ri)Ti.

12



The variance estimator for ŶC is defined by

V̂ (ŶC) =
L∑

k=1

ck(Ŷ (k)
C − ŶC)2,

where Ŷ
(k)
C = φ̂Ŷ

(k)
R + (1 − φ̂)Ŷ (k)

I . We deal with the consistency of the variance estimator V̂ (ŶC)
in the following Theorem.

Theorem 4.1 Under the same conditions as in Lemma 4.2,

E(ŶC) = Y + o(n−1/2N) (27)

and
V̂ (ŶC) = V ar(ŶC) + oP (n−1N2). (28)

Proof. Using the same techniques of Theorem 3.1 and Lemma 4.2, we can obtain that

L∑

k=1

ck(Ŷ (k)
R + Ŷ

(k)
I − ŶR − ŶI)2 = V ar(ŶR + ŶI) + oP (n−1N2)

which, together with (24) and (26), implies that

Ĉ(ŶR, ŶI) = Cov(ŶR, ŶI) + op(n−1N2)

and
φ̂− φ = oP (1)

for φ = [V ar(ŶR) + V ar(ŶI)− 2Cov(ŶR, ŶI)]−1[V ar(ŶI)− Cov(ŶR, ŶI)]. We can write that

ŶC = (φ̂− φ)(ŶR − Y ) + [(1− φ̂)− (1− φ)](ŶI − Y ) + φŶR + (1− φ)ŶI .

Then, using (19) and (20), we obtain that

ŶC = φŶR + (1− φ)ŶI + oP (n−1/2N),

which implies (27). Furthermore, it is easily obtained from (23) and (25) that

Ŷ
(k)
C − ŶC = φ(Ŷ (k)

R − ŶR) + (1− φ)(Ŷ (k)
I − ŶI) + oP (n−1/2N).

Finally, using (24) and (26), we obtain (28). Q.E.D.

5 Simulation results

In this section, we provide the results of a limited simulation study performed to test our theory. In
the simulation study, B = 1, 000 samples of size n = 100 are generated by

yi = βxi +
√

xiεi,

where xi ∼ Uniform(0, 1), εi ∼ N(0, σ2) for i = 1, . . . , n, and xi and εi are independent. We
simulate various σ2 for β = 4, 8. For the response probability under the first survey, we use the

13



Table 1: (β = 4, σ2 = 1)MSE(ȲD)/MSE(ỸC) and MSE(ȲD)/MSE(ŶC)

p

πi 0.3 0.5 0.7 0.9

0.28 1.228 1.140 1.003 0.913
(0,−2) 1.282 1.169 1.029 0.935
0.44 1.288 1.241 1.139 1.060

(−0.5, 0.5) 1.252 1.181 1.081 1.006
0.5 1.207 1.174 1.095 1.019

(−0.5, 1) 1.198 1.144 1.063 0.995
0.69 1.069 1.076 1.028 0.973

(1.3,−1) 1.099 1.094 1.051 1.001

logistic model πi = [1 + exp(−α1 − α2zi)]−1, where zi ∼ Uniform(0, 1) and the value of α is
assumed to be (α1, α2) =(0,-2), (-0.5,0.5), (-0.5,1) and (1.3,-1). Thus, the overall response rate
becomes 0.28, 0.44, 0.50 and 0.69, respectively. For the response probability p under callback, we
use constants 0.3, 0.5, 0.7 and 0.9.

We use the maximum likelihood method to estimate α and compute the value iteratively using the
Newton-Rapshon method. The response probability pi under callback is estimated as the response
rate among nonresponses. For the variance estimator, we use the standard jackknife method, where
ck is n−1(n− 1) and w

(k)
i is defined as (n− 1)−1nwi for i 6= k and 0 for i = k.

To survey the properties of the variance estimator, we calculate the relative mean and t-statistic.
The relative mean of the variance estimator is the empirical mean of the variance estimator divided
by the empirical variance of the point estimator. The t-statistic for the variance estimator is the
empirical bias of variance estimator divided by the empirical standard error of the empirical bias,
which was considered by Kim (2004).

Using B samples of {(yi, xi, εi, Ri, Ti); i = 1, ..., n} and wi = n−1, we computed the empirical
values of MSE(ȲD)/MSE(ỸC) and MSE(ȲD)/MSE(ŶC), where MSE(ȲD) is the mean square
error of the Deming’s estimator. We also computed the relative means and t-statistics for V̂ (ỸC)
and V̂ (ŶC). Each cell in Tables 1, 3 and 5 contain MSE(ȲD)/MSE(ỸC) and MSE(ȲD)/ MSE(ŶC)
in this order for various response probabilities πi and p. Each cell in Tables 2, 4 and 6 show the
relative means (t-statistics in parentheses) of V̂ (ỸC) and V̂ (ŶC) in this order for varying response
probabilities.

In real survey, we can sometimes find that response rate after callbacks is small. The data come
from an experimental sampling of fruit orchards in North Carolina in 1946. Three successive mailings
of the same questionnaire were sent to growers. Response rate of first mailing is 10%, response rate
of second mailing is 17% and response rate of third mailing is 14%, that is, nonresponse rate after
three mailings is 59%(cf. Finkner, 1950).

As anticipated, it is observed in Tables 1, 3 and 5 that MSE(ỸC) and MSE(ŶC) are smaller
than MSE(ȲD) for various small response probabilities πi and p. We see that the efficiency of ỸC

and ŶC in Table 3 is better than that of ỸC and ŶC in Table 5, because explanation of regression
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Table 2: (β = 4, σ2 = 1)Relative mean (t-statistic) of V̂ (ỸC) and V̂ (ŶC)

p

πi 0.3 0.5 0.7 0.9

0.28 1.069 (1.625) 1.001 (0.018) 1.011 (0.270) 1.022 (0.550)
(0,−2) 1.003 (0.065) 0.931 (-1.567) 0.936 (-1.468) 0.939 (-1.423)
0.44 1.078 (1.631) 1.018 (0.400) 1.019 (0.422) 1.020(0.452)

(−0.5, 0.5) 0.991 (-0.189) 0.964 (-0.793) 0.972 (-0.634) 0.976(-0.563)
0.5 1.086 (1.731) 1.028 (0.610) 1.029 (0.654) 1.034(0.741)

(−0.5, 1) 0.989 (-0.227) 0.967 (-0.733) 0.975 (-0.575) 0.985(-0.339)
0.69 1.063 (1.437) 0.995 (-0.110) 0.999 (-0.020) 1.002(0.053)

(1.3,−1) 0.970 (-0.678) 0.973 (-0.609) 0.997 (-0.065) 1.010(0.241)

Table 3: (β = 8, σ2 = 1)MSE(ȲD)/MSE(ỸC) and MSE(ȲD)/MSE(ŶC)

p

πi 0.3 0.5 0.7 0.9

0.28 1.481 1.236 1.021 0.900
(0,−2) 1.595 1.321 1.095 0.965
0.44 1.553 1.356 1.192 1.075

(−0.5, 0.5) 1.468 1.285 1.133 1.021
0.5 1.435 1.272 1.141 1.029

(−0.5, 1) 1.392 1.247 1.121 1.015
0.69 1.184 1.125 1.038 0.967

(1.3,−1) 1.206 1.155 1.063 0.993

Table 4: (β = 8, σ2 = 1)Relative mean (t-statistic) of V̂ (ỸC) and V̂ (ŶC)

p

πi 0.3 0.5 0.7 0.9

0.28 1.030 (0.725) 1.002 (0.042) 1.008 (0.191) 1.012 (0.293)
(0,−2) 0.983 (-0.390) 0.942 (-1.328) 0.946 (-1.249) 0.946 (-1.239)
0.44 1.049 (1.053) 1.015 (0.345) 1.016 (0.358) 1.015 (0.345)

(−0.5, 0.5) 0.989 (-0.240) 0.969 (-0.708) 0.973 (-0.627) 0.973 (-0.623)
0.5 1.068 (1.423) 1.033 (0.717) 1.033 (0.735) 1.034 (0.763)

(−0.5, 1) 0.996 (-0.099) 0.981 (-0.442) 0.984 (-0.376) 0.989 (-0.258)
0.69 1.018 (0.427) 0.986 (-0.351) 0.987 (-0.326) 0.987 (-0.301)

(1.3,−1) 0.983 (-0.389) 0.982 (-0.404) 0.984 (-0.365) 0.988 (-0.288)

15



Table 5: (β = 8, σ2 = 4.5)MSE(ȲD)/MSE(ỸC) and MSE(ȲD)/MSE(ŶC)

p

πi 0.3 0.5 0.7 0.9

0.28 1.203 1.129 1.001 0.914
(0,−2) 1.254 1.153 1.022 0.932
0.44 1.262 1.228 1.133 1.058

(−0.5, 0.5) 1.233 1.169 1.075 1.004
0.5 1.184 1.162 1.089 1.018

(−0.5, 1) 1.181 1.133 1.057 0.992
0.69 1.058 1.070 1.026 0.973

(1.3,−1) 1.089 1.087 1.048 1.001

Table 6: (β = 8, σ2 = 4.5)Relative mean (t-statistic) of V̂ (ỸC) and V̂ (ŶC)

p

πi 0.3 0.5 0.7 0.9

0.28 1.073 (1.709) 1.001 (0.018) 1.011 (0.277) 1.024 (0.579)
(0,−2) 1.004 (0.089) 0.930 (-1.587) 0.936 (-1.484) 0.939 (-1.431)
0.44 1.080 (1.668) 1.019 (0.403) 1.019 (0.427) 1.021 (0.464)

(−0.5, 0.5) 0.992 (-0.181) 0.964 (-0.804) 0.972 (-0.634) 0.976 (-0.555)
0.5 1.087 (1.741) 1.028 (0.595) 1.029 (0.642) 1.033 (0.737)

(−0.5, 1) 0.989 (-0.231) 0.965 (-0.765) 0.974 (-0.596) 0.985 (-0.353)
0.69 1.066 (1.514) 0.997 (-0.084) 1.001 (0.015) 1.004 (0.095)

(1.3,−1) 0.968 (-0.710) 0.971 (-0.652) 0.997 (-0.060) 1.012 (0.273)
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is weak for large σ2. Because the coefficient of determination is proportional to an estimator of β,
MSE(ỸC)/MSE(ȲD) and MSE(ŶC)/MSE(ȲD) in table 3 are larger than those in table 1. The
result of Table 2, 4 and 6 shows that all the variance estimators are asymptotically unbiased. Note
that variances of the variance estimators are asymptotically zero. In Tables 2, 4 and 6, we can see
that V̂ (ỸC) and V̂ (ŶC) are consistent estimators for V ar(ỸC) and V ar(ŶC) for various response
probabilities πi and p , respectively.

6 concluding and remarks

We also propose an estimator using the response probability and the ratio imputation in the response
model under callbacks. Using constants W1 and W2 with W1 = W2 = 1/2, we define

ỸJ = (W1X̃
−1
T ỸT + W2X̃

−1
R ỸR)X̃NR

and
ψ̃ = [V ar(ỸR) + V ar(ỸJ)− 2Cov(ỸR, ỸJ )]−1[V ar(ỸJ)− Cov(ỸR, ỸJ)], (29)

where X̃R =
∑n

i=1 wiπ
−1
i Rixi.

The estimator (X̃−1
T ỸT )X̃NR is estimated by callback and the estimator (X̃−1

R ỸR)X̃NR is esti-
mated by imputation. If all πi are equal, then X̃−1

R ỸRxi is the ratio imputation used by Rao and
Sitter (1995) and by Rao (1996).

Then, our proposed estimator is defined as

ỸM = ψ̃ỸR + (1− ψ̃)ỸJ .

Note that the variance of kỸR + (1 − k)ỸJ is minimized at k = ψ̃. We suggest an estimator using
estimated response probability and a variance estimator. We also can find similar properties in ỸJ

as in ỸC .

References

[1] Deming, W.E., 1953. On a Probability Mechanism to Attain an Economic Balance Between the
Resultant Error of Response and the Bias of Nonresponse. J. Amer. Statist. Assoc. 48, 743-772.

[2] Ekholm, A., Laaksonen, S., 1991. Weighting via Response Modeling in the Finnish Household
Budget Survey. J. Offic. Statist. 7, 325-337.

[3] Elliott, M.R., Little, R.J.A., Lewitzky, S., 2000. Subsampling Callbacks to Improve Survey
Efficiency. J. Amer. Statist. Assoc. 95, 730-738.

[4] Fay, R.E., 1991. A Design-based Perspective on Missing Data Variance, In the ASA Proceedings
of Bureau of the Census Annual Research Conference, U.S. Bureau of the Census, Washington,
D.C. 429-440.

[5] Fuller, W.A., 1996. Introduction to Statistical Time Series, 2nd ed. Wiley, New York.

[6] Groves, R.M., 1989. Survey Errors and Survey Costs. New York: Wiley.

17



[7] Hansen, M.H., Hurwitz, W.N., 1946. The Problem of Nonresponse in Sample Surveys. J. Amer.
Statist. Assoc. 41, 517-529.
Isaki, C.T., Fuller, W.A., 1982. Survey design under the regression superpopulation model. J.
Amer. Statist. Assoc. 77, 89-96.

[8] Iannacchione, V.G., 2003. Sequential Weight Adjustment for Location and Cooperation Propen-
sity for the 1995 National Survey of Family Growth. J. Offic. Statist. 19, 31-43.

[9] Kim, J.K., 2004. Finite Sample Properties of Multiple Imputation Estimators. The Ann. Statist.
32, 766-783.

[10] Kim,J.K., Park, H., 2006. Imputation using response probability. The Canadian J. Statist. 34,
171-182.

[11] Lipsitz, S.R., Ibrahim, J.G., Zhao, L.P., 1999. A Weighted Estimating Equation for Missing
Covariate Data with Properties similar to Maximum Likelihood. J. Amer. Statist. Assoc. 94,
1147-1160.

[12] Rao, J.N.K., Sitter, R.R., 1995. Variance Estimation under Two-Phase Sampling with Appli-
cation to Imputation for Missing Data. Biometrika 82, 453-60.

[13] Rao, J.N.K., Shao, J., 1992. Jackknife Variance Estimation with Survey Data under Hot Deck
Imputation. Biometrika 79, 811-822.

[14] Rosenbaum, P.R., 1987. Model-Based Direct Adjustment. J. Amer. Statist. Assoc. 82, 387-394.

[15] Robins, J.M., Rotnitzky, A., Zhao, L.P., 1994. Estimation of Regression Coefficients when some
Regressors are not always observed. J. Amer. Statist. Assoc. 89, 846-866.

[16] Shao, J., Steel, P., 1999. Variance Estimation for Survey Data with Composite Imputation and
Non-Negligible Sampling Fractions. J. Amer. Statist. Assoc. 94, 254-265.

18


