• Title/Summary/Keyword: Probability Density Distribution and function

Search Result 329, Processing Time 0.033 seconds

Distribution of Irregular Wave Height in Finite Water Depth (유한수심에서의 불규칙파의 파고 분포)

  • 안경모;마이클오찌
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.88-93
    • /
    • 1994
  • This study is concerned with an analytic derivation of the probability density function applicable for wave heights in finite water depth using two different methods. As the first method of the study, a probability density function is developed by applying a series of polynomials which is orthogonal with respect to Rayleigh probability density function. The newly derived probability density function is compared with the histogram constructed from wave data obtained in finite water depth which indicate strong non-Gaussian characteristics. Although the probability density represents the histogram very well. it has negative density at large values. Although the magnitude of the negative density is small. it negates the use of the distribution function fer estimating extreme values. As the second method of the study, a probability density function of wave height is developed by applying the maximum entropy method. The probability density function thusly derived agrees very well with the wave height distribution in shallow water, and appears to be useful in estimating extreme values and statistical properties of wave heights in finite water depth. However, a functional relationship between the probability distribution and the non-Gaussian characteristics of the data cannot be obtained by applying the maximum entropy method.

  • PDF

Estimating Suitable Probability Distribution Function for Multimodal Traffic Distribution Function

  • Yoo, Sang-Lok;Jeong, Jae-Yong;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.253-258
    • /
    • 2015
  • The purpose of this study is to find suitable probability distribution function of complex distribution data like multimodal. Normal distribution is broadly used to assume probability distribution function. However, complex distribution data like multimodal are very hard to be estimated by using normal distribution function only, and there might be errors when other distribution functions including normal distribution function are used. In this study, we experimented to find fit probability distribution function in multimodal area, by using AIS(Automatic Identification System) observation data gathered in Mokpo port for a year of 2013. By using chi-squared statistic, gaussian mixture model(GMM) is the fittest model rather than other distribution functions, such as extreme value, generalized extreme value, logistic, and normal distribution. GMM was found to the fit model regard to multimodal data of maritime traffic flow distribution. Probability density function for collision probability and traffic flow distribution will be calculated much precisely in the future.

Statistical and Probabilistic Assessment for the Misorientation Angle of a Grain Boundary for the Precipitation of in a Austenitic Stainless Steel (II) (질화물 우선석출이 발생하는 결정립계 어긋남 각도의 통계 및 확률적 평가 (II))

  • Lee, Sang-Ho;Choe, Byung-Hak;Lee, Tae-Ho;Kim, Sung-Joon;Yoon, Kee-Bong;Kim, Seon-Hwa
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.554-562
    • /
    • 2008
  • The distribution and prediction interval for the misorientation angle of grain boundary at which $Cr_2N$ was precipitated during heating at $900^{\circ}C$ for $10^4$ sec were newly estimated, and followed by the estimation of mathematical and median rank methods. The probability density function of the misorientation angle can be estimated by a statistical analysis. And then the ($1-{\alpha}$)100% prediction interval of misorientation angle obtained by the estimated probability density function. If the estimated probability density function was symmetric then a prediction interval for the misorientation angle could be derived by the estimated probability density function. In the case of non-symmetric probability density function, the prediction interval could be obtained from the cumulative distribution function of the estimated probability density function. In this paper, 95, 99 and 99.73% prediction interval obtained by probability density function method and cumulative distribution function method and compared with the former results by median rank regression or mathematical method.

Non-parametric Density Estimation with Application to Face Tracking on Mobile Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.49.1-49
    • /
    • 2001
  • The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...

  • PDF

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.

Finding Interkilling Time Probability Distribution in Stochastic Combats (확률과정 전투에서 명중시간간격 확률분포의 발견)

  • 홍윤기
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.2
    • /
    • pp.56-69
    • /
    • 2002
  • A technique of finding both probability density and distribution function for interkilling times is considered and demonstrated. An important result is that any arbitrary interfiring time random variables fit to this study, The interfiring renewal density function given a certain interfiring probability density function can be applied to obtain the corresponding interkilling renewal density function which helps us to estimate the expected number of killing events in a time period. The numerical inversion of Laplace transformation makes these possible and the results appear to be excellent. In case of ammunition supply is limited, an alternative way of getting the probability density function of time to the killing is investigated. The convolution technique may give us a means of settling for this new problem.

OPTIMAL APPROXIMATION BY ONE GAUSSIAN FUNCTION TO PROBABILITY DENSITY FUNCTIONS

  • Gwang Il Kim;Seung Yeon Cho;Doobae Jun
    • East Asian mathematical journal
    • /
    • v.39 no.5
    • /
    • pp.537-547
    • /
    • 2023
  • In this paper, we introduce the optimal approximation by a Gaussian function for a probability density function. We show that the approximation can be obtained by solving a non-linear system of parameters of Gaussian function. Then, to understand the non-normality of the empirical distributions observed in financial markets, we consider the nearly Gaussian function that consists of an optimally approximated Gaussian function and a small periodically oscillating density function. We show that, depending on the parameters of the oscillation, the nearly Gaussian functions can have fairly thick heavy tails.

Estimation of Non-Gaussian Probability Density by Dynamic Bayesian Networks

  • Cho, Hyun-C.;Fadali, Sami M.;Lee, Kwon-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.408-413
    • /
    • 2005
  • A new methodology for discrete non-Gaussian probability density estimation is investigated in this paper based on a dynamic Bayesian network (DBN) and kernel functions. The estimator consists of a DBN in which the transition distribution is represented with kernel functions. The estimator parameters are determined through a recursive learning algorithm according to the maximum likelihood (ML) scheme. A discrete-type Poisson distribution is generated in a simulation experiment to evaluate the proposed method. In addition, an unknown probability density generated by nonlinear transformation of a Poisson random variable is simulated. Computer simulations numerically demonstrate that the method successfully estimates the unknown probability distribution function (PDF).

  • PDF

Joint probability density function of droplet sizes and velocities in a transient diesel spray (간헐디젤분무의 액적크기 및 속도의 공동확률밀도함수)

  • Kim, Jong-Hyeon;Gu, Ja-Ye;O, Du-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.607-617
    • /
    • 1998
  • Comparisons of joint probability density distribution obtained from the raw data of measured droplet sizes and velocities in a transient diesel fuel spray with computed joint probability density function were made. Simultaneous droplet sizes and velocities were obtained using PDPA. Mathematical probability density functions which can fit the experimental distributions were extracted using the principle of maximum likelihood. Through the statistical process of functions, mean droplet diameters, non-dimensional mass, momentum and kinetic energy were estimated and compared with the experimental ones. A joint log-hyperbolic density function presents quite well the experimental joint density distribution which were extracted from experimental data.

Development of a Fatigue Damage Model of Wideband Process using an Artificial Neural Network (인공 신경망을 이용한 광대역 과정의 피로 손상 모델 개발)

  • Kim, Hosoung;Ahn, In-Gyu;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.88-95
    • /
    • 2015
  • For the frequency-domain spectral fatigue analysis, the probability density function of stress range needs to be estimated based on the stress spectrum only, which is a frequency domain representation of the response. The probability distribution of the stress range of the narrow-band spectrum is known to follow the Rayleigh distribution, however the PDF of wide-band spectrum is difficult to define with clarity due to the complicated fluctuation pattern of spectrum. In this paper, efforts have been made to figure out the links between the probability density function of stress range to the structural response of wide-band Gaussian random process. An artificial neural network scheme, known as one of the most powerful system identification methods, was used to identify the multivariate functional relationship between the idealized wide-band spectrums and resulting probability density functions. To achieve this, the spectrums were idealized as a superposition of two triangles with arbitrary location, height and width, targeting to comprise wide-band spectrum, and the probability density functions were represented by the linear combination of equally spaced Gaussian basis functions. To train the network under supervision, varieties of different wide-band spectrums were assumed and the converged probability density function of the stress range was derived using the rainflow counting method and all these data sets were fed into the three layer perceptron model. This nonlinear least square problem was solved using Levenberg-Marquardt algorithm with regularization term included. It was proven that the network trained using the given data set could reproduce the probability density function of arbitrary wide-band spectrum of two triangles with great success.