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1. INTRODUCTION 
 

Probability estimation is an important issue for many 
engineering applications, especially, for pattern 
recognition, signal detection, artificial intelligence, etc. 
Several parametric and nonparametric techniques are 
available for the estimation [1]. Parametric methods are 
the simplest to estimate the parameters of a distribution 
of known form. A Gaussian distribution is widely used 
as a parametric density model due to its convenient 
statistical analysis. However, non-Gaussian distributions 
are often encountered in practical applications. A 
nonparametric method is more important to this case for 
which the form of the distribution is unknown. The 
histogram is the simplest nonparametric approach 
available. However, the method is less attractive 
because of its discontinuous nature and because it 
requires a large amount of data. Another popular 
nonparametric method is the kernel-based approach in 
which an estimator is constructed using a set of kernel 
functions. The best known kernel-based approach is the 
Parzen-window estimate [2] which uses Gausssian 
kernels. For the best performance, an appropriate kernel 
function and its parameter values are chosen for specific 
data samples. However, the method is very sensitive to 
parameter values and it is often difficult to determine 
the optimal kernel. Additional computation, such as 
smoothing, is sometimes needed. 

In recent years, several approaches to PDF estimation 
have been proposed, such as soft computation, machine 
learning, information theory, etc. In [3], Fiori and 
Bucciarelli proposed estimating the distribution of a 
quasi-stationary random process by using an adaptive 
neural network which was trained to maximize the 
differential entropy. M. Srikanth et al. utilized a 
MinMax measure to estimate a distribution, which is a 
quantitative measure of information contained in a 
given set of moment constraints [4]. A conditional 

distribution function (CDF) estimate was developed by 
A. Sarajedini et al. in [5] based on sigmoidal network 
learning and compared to a kernel CDF estimator for a 
higher dimensional problem. Miller and Horn 
investigated estimating both a PDF and CDF by using 
an information-based learning in which encoding and 
decoding steps were proposed [6]. A generalized 
Gaussian distribution was involved in [7] where an 
estimate of a PDF shape parameter was addressed. In 
[8], Modha and Fainman obtained a PDF estimate using 
an exponential family based on multilayer feedforward 
networks, and derived an unsupervised learning 
algorithm for ML function. Baram and Roth developed 
an estimation method that maximized the output entropy 
of a sigmoidal neural network and named the proposed 
approach density shaping [9]. 

We propose a new probability model estimation 
approach for discrete problems using a DBN and a set 
of kernel functions. A Bayesian network (BN) is a 
graphical reasoning system that uses a probability 
distribution to describe stochastic relationships between 
its nodes. Each node in a BN represents a random 
variable and edges indicate dependencies between nodes. 
A DBN is a dynamic extension of a BN based on an 
evolving probabilistic model. BNs and DBNs are 
typically used to solve problems with significant 
uncertainty. 

The proposed approach utilizes a DBN in which a 
transition distribution is replaced with a set of kernel 
functions and the probability of feasible variables is 
expressed in terms of prior probabilities. The optimal 
parameter values in the estimator are determined via a 
learning algorithm that maximizes the likelihood 
function using gradient descent optimization. We test 
the proposed approach using computer simulations that 
estimate a discrete-type Poisson density then a nonlinear 
transformation of the discrete Poisson data. 

We next review kernel-based PDF estimation and the 
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DBN. Then we describe our proposed estimation 
approach and derive its learning algorithm. Finally, we 
present and discuss our simulation results. j
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2. KERNEL-BASED PROBABILTY ESTIMATE where tk is discrete time, η is the learning rate. We 

expand the partial differential equations using the chain 
rule as 

 
A kernel-based estimate is typically composed of a 

mixture of kernel (basis) functions  
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where x is a data vector, P(x) is the probability of x, φ is 
a kernel function, and αi and βi are parameters. Based 
on probability axioms, the kernel function must satisfy φ 
≥ 0 and the parameters αI must be positive. 

and 
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 The parameter values are determined using the 
recursions (6) and (7) with the derivatives expressed as 
(8) and (9). 

The parameters αi and βi affect estimation performance. 
Thus, choosing the parameter values is one of crucial 
issues in probability estimation. A natural method for 
choosing the parameters is to plot several curves with 
different values and visually examine them to search for 
the best fit. However, numerous applications require an 
automated or an adaptive optimization approach. 

 
3. DYNAMIC BAYESIAN NETWORKS 

 
A BN is a graphic model for stochastic relationships. 

It represents random variables as nodes and their 
dependencies as edges between the nodes. The random 
variables are assumed to have a finite number of states. 
The BN is described by a directed acyclic graph and a 
table of conditional probabilities. Let U = (A, B, C, D) 
be a universe of random variables, then a corresponding 
BN is depicted in Fig. 1. 

ML estimation [10] is used to determine the optimal 
parameter values in (1). Assuming independent data 
points, the objective function is defined as 
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Applying the natural logarithm to (3), we get 
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Fig. 1. An example of a BN. 
 

 
We maximize (4) to obtain two parameter vectors 

[ ]TNαααα L21=  and  [ T
Nββββ L21= ]

In this network, the probabilities P(A), P(B), P(C|A), 
and P(D|A,B) must be known. A joint probability P(U) 
is calculated as 
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By gradient descent method, the update rules for the 
parameters are expressed as 

Inference is the task of calculating the probability of 
each node by probability calculus from other 
probabilities. For instance, in Fig. 1, conditional 
probability of the variable A given B, C, and D is 
expressed using Bayes rule as 
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where the conditional probability P(xk|xk-1) is called the 
transition probability. A higher-order Markov model 
provides a more sophisticated solution but at an 
increasingly higher computational cost. A hidden 
Markov model (HMM) is a popular structure in which 
an observation variable depends on a hidden state and a 
sequence of hidden states evolves according to a 
Markov process. Fig. 3 illustrates a typical example of 
an HMM. 
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because each of the pairs (A, B) and (C, D) is 
statistically independent. We also have 
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Substituting (12) in (11), we obtain 
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Fig. 3. An example of HMM.  

 Next, we substitute the identity 
The joint probability of the hidden states and 
observation variables is expressed similarly to the first 
Markov model as 
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where the state transition probability P(xk|xk-1) is formed 
by a single transition matrix for a time-invariant HMM. 
The observation probability P(yk|xk) is usually modeled 
as Gaussian, a combination of Gaussians, or a neural 
network. In (17), the transition state xk and observation 
state yk are decomposed into deterministic and 
stochastic terms as 

 
This BN illustrates a quit simple computation of 
probability for a particular set of random variables. 
However, in case of complicated or large Bayesian 
networks, an efficient inference algorithm is required 
for a probability updating [11]. 
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represents temporally probabilistic relationships among 
random variables. This temporal (dynamic) aspect of 
modeling is more realistic in practice such as artificial 
intelligence, diagnosis, economic analysis, etc. Several 
DBN models have been proposed for a variety of 
applications. The simplest DBN example is the 
first-order Markov model shown in Fig. 2. 

 
where wk and vk are random noise vectors, and f and g 
are transition and observation functions, respectively. If 
both functions are linear and time-invariant, we have the 
dynamic linear time-invariant model 
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   where A is the state transition matrix and C is the 
observation matrix. If the two noise vectors in (19) are 
modeled as zero-mean Gaussian with covariance 
matrices Q and R, respectively, the transition and 
observation probabilities are 

Fig. 2. A first-order Markov model. 
 
In Fig. 2, a state vector x∈{x1, x2, …, xT} is modeled at 
a certain discrete time k∈{1,…, T}. Each variable is 
assumed to be first order Markov, i.e. it is dependent 
only upon the variable at the preceding time. A joint 
probability for this data sequence is expressed as 
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where N(⋅) denotes Gaussian. 

After constructing the Bayesian network, a learning 
procedure is developed, based on given data samples  
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Using (6), (7), (8) and (9) of Section II, the adjustment 
rules of the parameters are obtained as 

and prior knowledge. Bayesian network learning is 
concerned with determining the parameter values and 
the structure of the network: the former (parameter 
learning) determines the conditional probabilities for 
each state, and the latter (structure learning) selects the 
network model under given causal constraints. See [12] 
for a detailed description of BN learning. 
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 (26)4. DENSITY ESTIMATE BY A BN 

 
 In this Section, we propose a new probability 

estimation method using a kernel-based approach 
(Section II) and a BN (Section III). In Fig. 2, the 
posterior probability of a state vector x at k+1 is given 
by 

5. EXAMPLES AND RESULTS 
 

We simulate the proposed method to estimate the 
discrete probability vector of a non-Gaussian signal. In 
(25) and (26), a kernel function is used with the 
Gaussian model 
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where P(xi) is prior probability of xi. For specific values 
zi, zi ∈ , of xNℜ i in (21) we have  

For simplicity, the prior probabilities of the values zi i = 
1, …, N, in (23) are assumed equal, i.e. NzP i 1)( = . 
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Example I: First, we simulate the estimation of the 
Poisson distribution  

In (22), the transition distribution is obtained by a 
combination of kernel functions as in (1). Thus, the 
proposed estimate is formed as 
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−=+ βφα  (23) where λ is a parameter and k = 0, 1, …, ∞. Fig. 5 shows 
N=100 Poisson distributed data samples for λ=10 which 
are generated using the MATLAB© command poissrnd.  

This estimate is sequentially updated for a random 
vector xk at time k. The structure of this estimate is 
depicted in Fig. 4. 
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Fig. 4. The proposed estimate structure. 
 
As stated in Section II, the parameter vectors α and β in 
Fig. 4 are recursively adjusted via sequential learning. 
The objective function is similarly given by 

Fig. 5. Poisson random number (Example I). 
 
Initial values of α and β are randomly selected as 
uniformly distributed in [0,1] with the learning rate η = 
0.5. Recursive learning continues until a specified error 
tolerance is reached. The error function is the average 
absolute difference between a reference probability p* 
and the estimated probability P i.e. 
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Training is accomplished as in Example I. For 
comparison, the histogram method is additionally 
performed using the MATLAB command hist. The 
simulation results are given in Fig. 9. The results appear 
acceptable in comparison with those of the histogram 
approach. 
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In the training simulation, 100 training data samples at 
each time k were temporally generated. Fig. 6 illustrates 
simulation result of the estimated probabilities along 
with the reference values. The plot shows that the 
estimation errors are less than 0.01 at all data point with 
an average error value of 0.0089. 
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Fig. 9. Estimated probability (Example II). 
 

6. DISCUSSION 
 Fig. 6. Estimated probability (Example I). 

We propose a probability estimation approach using 
DBN.  The method was successfully used to estimate 
discrete non-Gaussian signals. From the simulation 
results, we conclude that the performance of the 
approach is acceptable.  

 
Example II: We nonlinearly transform Poisson random 
data in this Example. To simulate this scenario, a 
random input is fed to a nonlinear system and the 
probabilities of the system output are estimated. A block 
diagram for this process is depicted in Fig. 7. In future work, we will address the estimation of 

more complex distributions such as multi-variable 
non-Gaussian or non-stationary stochastic models. To 
this end, we will utilize and compare well-known 
algorithms such as the Viterbi algorithm [13]. 

 

Nonlinear
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x Density
Estimator P(y)

y

 
Fig. 7. Transformation of a random variable.  
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