• Title/Summary/Keyword: Probabilistic theory

Search Result 213, Processing Time 0.021 seconds

A Study of Efficient Viterbi Equalizer in FTN Channel (FTN 채널에서의 효율적인 비터비 등화기 연구)

  • Kim, Tae-Hun;Lee, In-Ki;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1323-1329
    • /
    • 2014
  • In this paper, we analyzed efficient decoding scheme with FTN (Faster than Nyquist) method that is transmission method faster than Nyquist theory and increase the throughput. we proposed viterbi equalizer model to minimize ISI (Inter-Symbol Interference) when FTN signal is transmitted. the proposed model utilized interference as branch information. In this paper, to decode FTN singal, we used turbo equalization algorithms that iteratively exchange probabilistic information between soft Viterbi equalizer (BCJR method) and LDPC decoder. By changing the trellis diagram in order to maximize Euclidean distance, we confirmed that performance was improved compared to conventional methods as increasing throughput of FTN signal.

Determining the Specificity of Terms using Compositional and Contextual Information (구성정보와 문맥정보를 이용한 전문용어의 전문성 측정 방법)

  • Ryu Pum-Mo;Bae Sun-Mee;Choi Key-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.7
    • /
    • pp.636-645
    • /
    • 2006
  • A tenn with more domain specific information has higher level of term specificity. We propose new specificity calculation methods of terms based on information theoretic measures using compositional and contextual information. Specificity of terms is a kind of necessary conditions in tenn hierarchy construction task. The methods use based on compositional and contextual information of terms. The compositional information includes frequency, $tf{\cdot}idf$, bigram and internal structure of the terms. The contextual information of a tenn includes the probabilistic distribution of modifiers of terms. The proposed methods can be applied to other domains without extra procedures. Experiments showed very promising result with the precision of 82.0% when applied to the terms in MeSH thesaurus.

On Mathematical Representation and Integration Theory for GIS Application of Remote Sensing and Geological Data

  • Moon, Woo-Il M.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.37-48
    • /
    • 1994
  • In spatial information processing, particularly in non-renewable resource exploration, the spatial data sets, including remote sensing, geophysical and geochemical data, have to be geocoded onto a reference map and integrated for the final analysis and interpretation. Application of a computer based GIS(Geographical Information System of Geological Information System) at some point of the spatial data integration/fusion processing is now a logical and essential step. It should, however, be pointed out that the basic concepts of the GIS based spatial data fusion were developed with insufficient mathematical understanding of spatial characteristics or quantitative modeling framwork of the data. Furthermore many remote sensing and geological data sets, available for many exploration projects, are spatially incomplete in coverage and interduce spatially uneven information distribution. In addition, spectral information of many spatial data sets is often imprecise due to digital rescaling. Direct applications of GIS systems to spatial data fusion can therefore result in seriously erroneous final results. To resolve this problem, some of the important mathematical information representation techniques are briefly reviewed and discussed in this paper with condideration of spatial and spectral characteristics of the common remote sensing and exploration data. They include the basic probabilistic approach, the evidential belief function approach (Dempster-Shafer method) and the fuzzy logic approach. Even though the basic concepts of these three approaches are different, proper application of the techniques and careful interpretation of the final results are expected to yield acceptable conclusions in cach case. Actual tests with real data (Moon, 1990a; An etal., 1991, 1992, 1993) have shown that implementation and application of the methods discussed in this paper consistently provide more accurate final results than most direct applications of GIS techniques.

Analyzing Chemical Reaction Routes of Explosion by a Mixed Acid - Focusing on Chemical Carriers - (혼산에 의한 폭발사고의 화학반응 경로 분석 - 화학물질 운반 선박을 중심으로 -)

  • Kang, Yu Mi;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.661-668
    • /
    • 2017
  • The purpose of this study is to analyze the chemical reaction pathway for explosion accident of mixed cargo. The analysis used a structural scenario using event-tree analysis. Structural scenarios were constructed by estimating various chemical reaction paths in the content of the mixed cargo accident recorded in the written verdict. The analytical method was applied to three kinds of analysis: chemical analysis based on chemical theory, quantitative analysis using chemical reaction formula, and probabilistic analysis through questionnaire. As a result of analysis, the main pathway of the accident occurred in three ways: the path of explosion due to the reaction of concentrated sulfuric acid with water, the path of explosion due to the reaction of metal and mixed acid, and the path of explosion by synthesizing with special substances. This result is similar to the path recorded in the validation, and it leads to thar the proposed path analysis method is valid. The proposed method is expected to be applicable to chemical reaction path estimation of various chemical accidents.

COLLAPSE PRESSURE ESTIMATES AND THE APPLICATION OF A PARTIAL SAFETY FACTOR TO CYLINDERS SUBJECTED TO EXTERNAL PRESSURE

  • Yoo, Yeon-Sik;Huh, Nam-Su;Choi, Suhn;Kim, Tae-Wan;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.450-459
    • /
    • 2010
  • The present paper investigates the collapse pressure of cylinders with intermediate thickness subjected to external pressure based on detailed elastic-plastic finite element (FE) analyses. The effect of the initial ovality of the tube on the collapse pressure was explicitly considered in the FE analyses. Based on the present FE results, the analytical yield locus, considering the interaction between the plastic collapse and local instability due to initial ovality, was also proposed. The collapse pressure values based on the proposed yield locus agree well with the present FE results; thus, the validity of the proposed yield locus for the thickness range of interest was verified. Moreover, the partial safety factor concept based on the structural reliability theory was also applied to the proposed collapse pressure estimation model, and, thus, the priority of importance of respective parameter constituting for the collapse of cylinders under external pressure was estimated in this study. From the application of the partial safety factor concept, the yield strength was concluded to be the most sensitive, and the initial ovality of tube was not so effective in the proposed collapse pressure estimation model. The present deterministic and probabilistic results are expected to be utilized in the design and maintenance of cylinders subjected to external pressure with initial ovality, such as the once-through type steam generator.

Probabilistic Evaluation of the Effect of Drought on Water Temperature in Major Stream Sections of the Nakdong River Basin (낙동강 유역 주요하천 구간에서 가뭄이 수온에 미치는 영향의 확률론적인 평가)

  • Seo, Jiyu;Won, Jeongeun;Lee, Hosun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.369-380
    • /
    • 2021
  • In this work, we analyzed the effects of drought on the water temperature (WT) of Nakdong river basin major river sections using Standardized Precipitation Index (SPI) and WT data. The analysis was carried out on a seasonal basis. After calculating the optimal time scale of the SPI through the correlation between the SPI and WT data, we used the copula theory to model the joint probability distribution between the WT and SPI on the optimal time scale. During spring and fall, the possibility of environmental drought caused by high WT increased in most of the river sections. Notably, in summer, the possibility of environmental drought caused by high WT increased in all river sections. On the other hand, in winter, the possibility of environmental drought caused by low WT increased in most river sections. From the risk map, which quantified the sensitivity of WT to the risk of environmental drought, the river sections Nakbon C, Namgang E, and Nakbon K showed increased stress in the water ecosystem due to high WT when drought occurred in summer. When drought occurred in winter, an increased water ecosystem stress caused by falling WT was observed in the river sections Gilan A, Yongjeon A, Nakbon F, Hwanggang B, Nakbon I, Nakbon J, Nakbon K, Nakbon L, and Nakbon M. The methodology developed in this study will be used in the future to quantify the effects of drought on water quality as well as WT.

Designs of Pipe Fitting with Three Dimensional Measurement and Kinematic Constrained Equations (파이프 체결을 위한 3차원 측정 및 기구적 구속조건 기반의 설계 방식)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.54-61
    • /
    • 2022
  • Ship is a huge system including a variety of pipe arrangements. Pipes are installed according to the design layout, however the end poistion of pipes are not well matched owing to its measurement and construction errors. In this situation, the customized pipe fitting is frequently designed to connect with both pipes, the position of which are manually measured. This paper focused that these two coordinates are measured by point cloud from RGBD sensor and the relative transformation induced by positional and orientational differences is calculated by inverse kinematics in robotics theory. Therefore, the result applies for the methodology of the pipe connection design. The pipe coordinate that is estimated by the matching and the probabilistic RANSAC method will be verified by experiments. The kinematic design parameters are computationally calculated by using the minimum degree of freedom that connects both pipe coordinates.

Conditional Density based Statistical Prediction

  • J Rama Devi;K. Koteswara Rao;M Venkateswara Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.127-139
    • /
    • 2023
  • Numerous genuine issues, for example, financial exchange expectation, climate determining and so forth has inalienable arbitrariness related with them. Receiving a probabilistic system for forecast can oblige this dubious connection among past and future. Commonly the interest is in the contingent likelihood thickness of the arbitrary variable included. One methodology for expectation is with time arrangement and auto relapse models. In this work, liner expectation technique and approach for computation of forecast coefficient are given and likelihood of blunder for various assessors is determined. The current methods all need in some regard assessing a boundary of some accepted arrangement. In this way, an elective methodology is proposed. The elective methodology is to gauge the restrictive thickness of the irregular variable included. The methodology proposed in this theory includes assessing the (discretized) restrictive thickness utilizing a Markovian definition when two arbitrary factors are genuinely needy, knowing the estimation of one of them allows us to improve gauge of the estimation of the other one. The restrictive thickness is assessed as the proportion of the two dimensional joint thickness to the one-dimensional thickness of irregular variable at whatever point the later is positive. Markov models are utilized in the issues of settling on an arrangement of choices and issue that have an innate transience that comprises of an interaction that unfurls on schedule on schedule. In the nonstop time Markov chain models the time stretches between two successive changes may likewise be a ceaseless irregular variable. The Markovian methodology is especially basic and quick for practically all classes of classes of issues requiring the assessment of contingent densities.

Development of the Deterioration Models for the Port Structures by the Multiple Regression Analysis and Markov Chain (다중 회귀분석 및 Markov Chain을 통한 항만시설물의 상태열화모델 개발)

  • Cha, Kyunghwa;Kim, Sung-Wook;Kim, Jung Hoon;Park, Mi-Yun;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.229-239
    • /
    • 2015
  • In light of the significant increase in the quantities of goods transported and the development of the shipping industry, the frequency of usage of port structures has increased; yet, the government's budget for the shipping & port of SOC has been reduced. Port structures require systematically effective maintenance and management trends that address their growing frequency of usage. In order to construct a productive maintenance system, it is essential to develop deterioration models of port structures that consider various characteristics, such as location, type, use, constructed level, and state of maintenance. Processes for developing such deterioration models include examining factors that cause the structures to deteriorate, collecting data on deteriorating structures, and deciding methods of estimation. The techniques used for developing the deterioration models are multiple regression analysis and Markov chain theory. Multiple regression analysis can reflect changes over time and Markov chain theory can apply status changes based on a probabilistic method. Along with these processes, the deterioration models of open-type and gravity-type wharfs were suggested.

A Research on the Probabilistic Calculation Method of River Topographic Factors (하천 지형인자의 확률론적 산정 방식 연구)

  • Choo, Yeon-Moon;Ma, Yun-Han;Park, Sang-Ho;Sue, Jong-Chal;Kim, Yoon-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.509-516
    • /
    • 2020
  • Since the 1960s, many rivers have been polluted and destroyed due to river repair projects for economic development and the covering of small rivers due to urbanization. Many studies have analyzed rivers using measured river topographic factors, but surveying is not easy when the flow rate changes rapidly, such as during a flood. In addition, the previous research has been mainly about the cross section of a river, so information on the longitudinal profile is insufficient. This research used informational entropy theory to obtain an equation that can calculate the average river slope, river slope, and river longitudinal elevation for a river basin in real time. The applicability was analyzed through comparison with measured data of a river's characteristic factors obtained from a river plan. The parameters were calculated using informational entropy theory, nonlinear regression analysis, and actual data. The longitudinal elevation entropy equation for each stream was then calculated, and so was the average river slope. All of the values were over 0.96, so it seems that reliable results can be obtained when calculating river characteristic factors.