• 제목/요약/키워드: Probabilistic sensitivity

검색결과 217건 처리시간 0.023초

전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part II : 화학제품의 환경부하 전과정평가에 있어 건강영향분석 모의사례연구 (Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : Life Cycle Assessment for Environmental Load of Chemical Products using Probabilistic Health Risk Analysis : A Case Study)

  • 박재성;최광수
    • 환경영향평가
    • /
    • 제9권3호
    • /
    • pp.203-214
    • /
    • 2000
  • Health risk assessment is applied to streamlining LCA(Life Cycle Assessment) using Monte carlo simulation for probabilistic/stochastic exposure and risk distribution analysis caused by data variability and uncertainty. A case study was carried out to find benefits of this application. BTC(Benzene, Trichloroethylene, Carbon tetrachloride mixture alias) personal exposure cases were assumed as production worker(in workplace), manager(in office) and business man(outdoor). These cases were different from occupational retention time and exposure concentration for BTC consumption pattern. The result of cancer risk in these 3 scenario cases were estimated as $1.72E-4{\pm}1.2E+0$(production worker; case A), $9.62E-5{\pm}1.44E-5$(manger; case B), $6.90E-5{\pm}1.16E+0$(business man; case C), respectively. Portions of over acceptable risk 1.00E-4(assumed standard) were 99.85%, 38.89% and 0.61%, respectively. Estimated BTC risk was log-normal pattern, but some of distributions did not have any formal patterns. Except first impact factor(BTC emission quantity), sensitivity analysis showed that main effective factor was retention time in their occupational exposure sites. This case study is a good example to cover that LCA with probabilistic risk analysis tool can supply various significant information such as statistical distribution including personal/environmental exposure level, daily time activity pattern and individual susceptibility. Further research is needed for investigating real data of these input variables and personal exposure concentration and application of this study methodology.

  • PDF

지반 불확실성을 고려한 연직배수재 배치간격의 확률론적 해석과 결정 (Probabilistic Analysis and Design of the Spacing of Prefabricated Vertical Drains Considering Uncertainties in Geotechnical Property)

  • 김방식;김병일
    • 한국지반공학회논문집
    • /
    • 제23권4호
    • /
    • pp.125-132
    • /
    • 2007
  • 본 연구에서는 표준압밀, 방사형 일정변형속도 압밀, 로우셀압밀, 복합통수능 및 교란영역시험을 수행하여 연직배수공법의 신뢰성 설계를 위한 파라미터를 산정하였다. 또한 방사형 압밀이론에 대한 민감도 해석, 결정론적 해석 및 확률론적 해석이 수행되었다. 시험 결과를 이용한 방사형 압밀이론의 확률론적 해석 결과와 결정론적 해석 결과를 비교, 분석 하였으며, 그로부터 배수재 배치간격은 확률론적 방법보다 결정론적 방법에서 더 넓게 산정됨을 제시하였다. 이는 결정론적 해석에서는 지반 불확실성을 고려하지 못하였기 때문이다. 두 방법을 이용하여 산정된 배치간격간의 차이는 목표 압밀도에 도달할 수 있는 확률과 수평압밀계수의 변동계수에 영향을 받는 것으로 나타났다.

Sensitivity Analysis of Width Representation for Gait Recognition

  • Hong, Sungjun;Kim, Euntai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권2호
    • /
    • pp.87-94
    • /
    • 2016
  • In this paper, we discuss a gait representation based on the width of silhouette in terms of discriminative power and robustness against the noise in silhouette image for gait recognition. Its sensitivity to the noise in silhouette image are rigorously analyzed using probabilistic noisy silhouette model. In addition, we develop a gait recognition system using width representation and identify subjects using the decision level fusion based on majority voting. Experiments on CASIA gait dataset A and the SOTON gait database demonstrate the recognition performance with respect to the noise level added to the silhouette image.

Optimal Design of Inverse Electromagnetic Problems with Uncertain Design Parameters Assisted by Reliability and Design Sensitivity Analysis

  • Ren, Ziyan;Um, Doojong;Koh, Chang-Seop
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.266-272
    • /
    • 2014
  • In this paper, we suggest reliability as a metric to evaluate the robustness of a design for the optimal design of electromagnetic devices, with respect to constraints under the uncertainties in design variables. For fast numerical efficiency, we applied the sensitivity-assisted Monte Carlo simulation (S-MCS) method to perform reliability calculation. Furthermore, we incorporated the S-MCS with single-objective and multi-objective particle swarm optimization algorithms to achieve reliability-based optimal designs, undertaking probabilistic constraint and multi-objective optimization approaches, respectively. We validated the performance of the developed optimization algorithms through application to the optimal design of a superconducting magnetic energy storage system.

변위 제한 조건하에서의 신뢰성 기반 형상 최적화 (Reliability-Based Shape Optimization Under the Displacement Constraints)

  • 오영규;박재용;임민규;박재용;한석영
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.589-595
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.

Probabilistic Fracture Mechanics Analysis of Boling Water Reactor Vessel for Cool-Down and Low Temperature Over-Pressurization Transients

  • Park, Jeong Soon;Choi, Young Hwan;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.545-553
    • /
    • 2016
  • The failure probabilities of the reactor pressure vessel (RPV) for low temperature over-pressurization (LTOP) and cool-down transients are calculated in this study. For the cool-down transient, a pressure-temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME) code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition ($RT_{NDT}$). The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

Development of risk assessment framework and the case study for a spent fuel pool of a nuclear power plant

  • Choi, Jintae;Seok, Ho
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1127-1133
    • /
    • 2021
  • A Spent Fuel Pool (SFP) is designed to store spent fuel assemblies in the pool. And, a SFP cooling and cleanup system cools the SFP coolant through a heat exchanger which exchanges heat with component cooling water. If the cooling system fails or interfacing pipe (e.g., suction or discharge pipe) breaks, the cooling function may be lost, probably leading to fuel damage. In order to prevent such an incident, it is required to properly cool the spent fuel assemblies in the SFP by either recovering the cooling system or injecting water into the SFP. Probabilistic safety assessment (PSA) is a good tool to assess the SFP risk when an initiating event for the SFP occurs. Since PSA has been focused on reactor-side so far, it is required to study on the framework of PSA approach for SFP and identify the key factors in terms of fuel damage frequency (FDF) through a case study. In this study, therefore, a case study of SFP-PSA on the basis of design information of APR-1400 has been conducted quantitatively, and several sensitivity analyses have been conducted to understand the impact of the key factors on FDF.

민감도가 고려된 유전 알고리듬을 이용한 보 구조물의 지지점 최적화에 관한 연구 (A Study on the Support location Optimizations of the Beams using the Genetic Algorithm and the Sensitivity Analysis.)

  • 이재관;신효철
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.783-791
    • /
    • 2000
  • This describes a study on the support location optimizations of the beams using the genetic algorithm and the sensitivity analysis. The genetic algorithm is a probabilistic method searching the optimum at several points simultaneously and requiring only the values of the object and constraint functions. It has therefore more chances to find the global solution and can be applied to the various problems. Nevertheless, it has such a shortcoming that it takes too many calculations, because it is ineffective in local search. While the traditional method using sensitivity analysis is of great advantage in searching the near optimum. thus the combination of the two techniques will make use of the individual advantages, that is, the superiority in global searching form the genetic algorithm and that in local searching form the sensitivity analysis. In this thesis, for the practical applications, the analysis is conducted by FEB ; and as the shapes of structures are taken as the design variation, it requires re-meshing for every analysis. So if it is not properly controlled, the result of the analysis is affected and the optimized solution amy not be the real one. the method is efficiently applied to the problems which the traditional methods are not working properly.

  • PDF

반응면 기법을 이용한 복합재 평판의 신뢰도 및 민감도해석 (Reliability and Sensitivity Analysis for Laminated Composite Plate Using Response Surface Method)

  • 이석제;장문호;김재기;문정원;김인걸
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.461-466
    • /
    • 2013
  • 섬유강화 복합재료는 무게 절감을 위해 다양한 공학 분야에 널리 사용되고 있다. 각 층의 재료 물성치는 일반적인 금속재료에 비해 더 불확실한 것으로 알려져 있으며 하중 방향에 따라 매우 민감하게 반응한다. 그러므로, 복합재 적층판의 설계에서 불확실성을 고려하는 것은 매우 중요하다. 본 논문에서는 COMSOL과 MATLAB을 이용하여 끝단 변위가 설계 요구조건으로 정의된 경우, 재료 물성치를 확률변수로 하는 복합재 적층판에 대한 신뢰성 해석을 수행하였다. 또한 근사기법의 효율성과 정확성을 확인하고 확률론적 민감도 해석을 수행하였다. 결과적으로 수중 비행체의 비행자세 안정장치에 대한 개선된 설계 방법의 적용가능성을 제시할 수 있었다.

단층 파라미터에 따른 확률론적 지진해일 재해곡선의 민감도 분석 (Sensitivity Analysis According to Fault Parameters for Probabilistic Tsunami Hazard Curves)

  • 조명환;김건형;윤성범
    • 한국해안·해양공학회논문집
    • /
    • 제31권6호
    • /
    • pp.368-378
    • /
    • 2019
  • 확률론적 지진해일 재해도 평가를 위한 로직트리는 지진발생 패턴의 다양성을 고려하기 위해 많은 변수를 고려하여 구성된다. 고려되는 변수가 많아질수록 재해도 평가 결과는 다양한 패턴으로 변화한다. 본 연구에서는 로직트리에 제시되어 있는 다양한 단층 파라미터 변수와 스케일링 규칙이 부산 근해에서의 지진해일 재해도에 미치는 영향을 평가하였다. 로직트리에 제시된 변수 중 주향각, 경사각 및 단층변위분포 변수의 값을 변화시켜가며 지진해일 전파모의를 수행하고, 그 결과를 이용하여 민감도 분석을 수행하였다. 그 결과 주향각 변수가 재해도 평가 결과에 미치는 영향은 예상보다 크지 않은 반면, 초기수면의 공간적 분포에 영향을 줄 수 있는 경사각과 단층변위분포의 영향이 크게 나타났다. 이는 주향각보다는 초기수면의 형상을 결정하는 경사각과 단층변위의 공간분포가 동해 지진해일의 재해도 평가에서 중요인자임을 보여준다.