DOI QR코드

DOI QR Code

단층 파라미터에 따른 확률론적 지진해일 재해곡선의 민감도 분석

Sensitivity Analysis According to Fault Parameters for Probabilistic Tsunami Hazard Curves

  • 투고 : 2019.11.18
  • 심사 : 2019.12.14
  • 발행 : 2019.12.31

초록

확률론적 지진해일 재해도 평가를 위한 로직트리는 지진발생 패턴의 다양성을 고려하기 위해 많은 변수를 고려하여 구성된다. 고려되는 변수가 많아질수록 재해도 평가 결과는 다양한 패턴으로 변화한다. 본 연구에서는 로직트리에 제시되어 있는 다양한 단층 파라미터 변수와 스케일링 규칙이 부산 근해에서의 지진해일 재해도에 미치는 영향을 평가하였다. 로직트리에 제시된 변수 중 주향각, 경사각 및 단층변위분포 변수의 값을 변화시켜가며 지진해일 전파모의를 수행하고, 그 결과를 이용하여 민감도 분석을 수행하였다. 그 결과 주향각 변수가 재해도 평가 결과에 미치는 영향은 예상보다 크지 않은 반면, 초기수면의 공간적 분포에 영향을 줄 수 있는 경사각과 단층변위분포의 영향이 크게 나타났다. 이는 주향각보다는 초기수면의 형상을 결정하는 경사각과 단층변위의 공간분포가 동해 지진해일의 재해도 평가에서 중요인자임을 보여준다.

Logic trees for probabilistic tsunami hazard assessment include numerous variables to take various uncertainty on earthquake generation into consideration. Results from the hazard assessment vary in different way as more variables are considered in the logic tree. This study is conducted to estimate the effects of various scaling laws and fault parameters on tsunami hazard at the nearshore of Busan. Active fault parameters, such as strike angle, dip angle and asperity, are adjusted in the modelling of tsunami propagation, and the numerical results are used in the sensitivity analysis. The influence of strike angle to tsunami hazard is not as much significant as it is expected, instead, dip angle and asperity show a considerable impact to tsunami hazard assessment. It is shown that the dip angle and the asperity which determine the initial wave form are more important than the strike angle for the assessment of tsunami hazard in the East Sea.

키워드

참고문헌

  1. Atomic Energy Society of Japan (2011). Implementation standard concerning the tsunami probabilistic risk assessment of Nuclear Power Plant:2011 AESJ-SC-RK004E : 2011, NISSEI EBLO INC., Tokyo, Japan.
  2. Baek, U. (2013). Effects of underwater topography of East Sea on propagation of tsunamis towards Korean Peninsula. Doctorate dissertation, Hanyang Univerisity.
  3. Irikura, K. and Miyake, H. (2001). Prediction of strong ground motions for scenario earthquakes. Journal of Geography, 110(6), 849-875 (in Japanese). https://doi.org/10.5026/jgeography.110.6_849
  4. Japan Society of Civil Engineers (2002). Tsunami assessment method for Nuclear Power Plants in Japan.
  5. Japan Society of Civil Engineers (2011). Method for probabilistictsunami hazard analysis (in Japanese).
  6. Japan Society of Civil Engineers (2016). Tsunami assessment method for Nuclear Power Plants 2016 (in Japanese).
  7. Jho, M.H., Kim, G.H. and Yoon, S.B. (2019). Construction of logic trees and hazard curves for probabilistic tsunami hazard analysis. Journal of Korean Society of Coastal and Ocean Engineers, 31(2), 62-72 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.2.62
  8. Mansinha, L. and Smylie, D. (1971). The displacement fields of inclined faults. Bulletin of the Seismological Society of America, 61(5), 1433-1440.
  9. Ministry of Land, Infrastructure, Transport and Tourism (2014). Report of the study group on investigation and assessment of large-scale earthquake in the Sea of Japan (in Japanese).
  10. Murotani, S., Matsushima, S., Azuma, T., Irikura, K. and Kitagawa, S. (2010). Scaling relations of earthquakes on active mega-fault systems. Geophysical Bulletin of Hokkaido University 73, 117-127 (in Japanese).
  11. Rhee, H.M., Kim, M.K., Sheen, D.H. and Choi, I.K. (2015). Application of probabilistic tsunami hazard analysis for the Nuclear Power Plant site. Journal of the Earthquake Engineering Society of Korea, 19(6), 265-271 (in Korean). https://doi.org/10.5000/EESK.2015.19.6.265
  12. Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N. and Kowada, A. (1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70(1), 59-80. https://doi.org/10.1785/gssrl.70.1.59
  13. Tajima, R., Matsumoto, Y., Si, H. and Irikura, K. (2013). Comparative study on scaling relations of source parameters for great earthquakes in inland crusts and on subducting plate-boundaries. Journal of the Seismological Society of Japan, 66(3), 31-45 (in Japanese).
  14. Takemura, M. (1998). Scaling law for japanese intraplate earthquakes in special relations to the surface faults and the damages. Journal of the Seismological Society of Japan, 5, 211-228 (in Japanese).
  15. Yoon, S.B., Lim, C.H. and Choi, J. (2007). Dispersion-correction finite difference model for simulation of transoceanic tsunamis. Terrestrial Atmospheric and Oceanic Sciences, 18(1), 31-53. https://doi.org/10.3319/TAO.2007.18.1.31(T)