• Title/Summary/Keyword: Pro-, Anti-inflammation

Search Result 567, Processing Time 0.03 seconds

In vitro Anti-inflammation Effect of Adventitious Shoots of Toona sinesis in Propionibacterium acnes-induced Skin Dermatitis

  • Hyeon-Ji Lim;In-Sun Park;Seung-Il Jeong;Kang-Yeol Yu;Chan-Hun Jung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.73-73
    • /
    • 2020
  • Toona sinensis (TS) leaf is known to antinociceptive, antioxidative stress and skin moisturizing effects. Acnes vulgaris is a chronic skin disease with various symptoms including itchiness, pain and interruption of normal skin function. Propionibacterium acnes (P. acnes) is a major factor in the occurrence of inflammatory acnes. This study evaluated the antioxidant and anti-inflammation effects by TS extract from adventitious shoots. TS extract showed anti-inflammatory activities by suppression of pro-inflammation mediators (iNOS and COX-2) in LPS-stimulated RAW264.7 cells. TS extract also has anti-inflammatory activities by inhibiting the secretion of pro-inflammatory cytokines on P. acnes-stimulated HaCaT cells. These effects were regulated by MAPK signaling pathway. Therefore, we suggest that TS extract from adventitious shoots might have applications as a medicine for treating P. acnes-induced skin diseases.

  • PDF

Anti-inflammatory Effect of Bear's Gall in Rat Microglia

  • Joo, Seong-Soo;Yoo, Yeong-Min;Lee, Seon-Goo;Lee, Do-Ik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.204-211
    • /
    • 2005
  • We hypothesize that bear's gall may have a certain role in anti-inflammation through a preventive effect of pro-inflammatory potentials. Secondly, we tried to connect the experimental results to Alzheimer's disease (AD), which chronic inflammation is a main cause of the disease. For this theme, we designed to elucidate the efficacy of bear's gall in suppressing the pro-inflammatory mediators, such as nitric oxide (NO) and $interleukin-1{\beta}\;(IL-1{\beta})$ in rat microglia. From the study, we concluded that bear's gall plays a positive role in suppressing such pro-inflammatory repertoire from rat microglia comparing to normal and positive control, such as culture media and cyclosporine. Interestingly, bear's gall showed a prolonged effect of anti-inflammation comparing with cyclosporine when time goes by up to 48h with a significant suppression at $1.2\;mg/m{\ell}$. Therefore, we can consider that bear's gall in part can be applied to AD therapy in that it suppresses the expression of pro-inflammatory mediators as well as its continued effect.

Role of Salvia miltiorrhiza for Modulation of Th2-derived Cytokines in the Resolution of Inflammation

  • Moon, Sun-Hee;Shin, Seul-Mee;Kim, Seul-Ah;Oh, Hee-Eun;Han, Shin-Ha;Lee, Seung-Jeong;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.288-298
    • /
    • 2011
  • Background: Salvia miltiorrhiza (SM) has been used to treat inflammatory diseases including edema and arthritis; however, the anti-inflammatory mechanism of SM action remains unresolved. Methods: The effects of an ethanol extract of SM (ESM) on pro-inflammatory cytokines such as TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and NO, and on anti-inflammatory cytokines including IL-4, IL-10, TGF-${\beta}$, and IL-1Ra have been studied in an attempt to elucidate the anti-inflammatory mechanism in murine macrophages. Results: ESM inhibited the production of pro-inflammatory cytokines via down-regulation of gene and protein expression whereas it increased the anti-inflammatory cytokines. Furthermore, ESM inhibited the expression of the chemokines, RANTES and CX3CL1, as well as of inflammatory mediators such as TLR-4 and $11{\beta}$-HSD1. Conclusion: These results indicated that the regulatory effects of ESM may be mediated though the suppression of pro-inflammatory cytokines as well as the induction of anti-inflammatory cytokines. Consequently, we speculate that ESM has therapeutic potential for inflammation-associated disorders.

Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

  • Kim, Kyung-Mi;Kim, Yoo-Sun;Lim, Ji Ye;Min, Soo Jin;Ko, Hee-Chul;Kim, Se-Jae;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.3-10
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS: An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS: Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), IL-6, and IL-$1{\beta}$ in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-${\alpha}$ were down-regulated in response to inhibition of $I{\kappa}B{\alpha}$ phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS: SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators.

Anti-Inflammatory Effect of Fermented Liriope platyphylla Extract in LPS-stimulated RAW 264.7 Macrophages

  • Lee, Hyun-Ah;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • The present study was designed to evaluate the inhibitory effects of fermented Liriope platyphylla extract on the production of inflammation-related mediators (NO, ROS, NF-${\kappa}B$, iNOS and COX-2) and pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, IL-6) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Freeze-dried Liriope platyphylla was fermented by Saccharomyces cerevisiae and extracted with 70% ethanol. In lipopolysaccharide-stimulated macrophage cells, the treatment with fermented Liriope platyphylla extract decreased the generation of intracellular reactive oxygen species dose-dependently and increased antioxidant enzyme activities, including superoxide dismutase, catalase and glutathione peroxidase. Fermented Liriope platyphylla extract also inhibited NO production in lipopolysaccharide-stimulated RAW 264.7 cell. The expressions of NF-${\kappa}B$, iNOS, COX-2 and pro-inflammatory cytokines were inhibited by the treatment with fermented Liriope platyphylla extract. Thus, this study shows the fermented Liriope platyphylla extract could be effective at inhibiting the inflammation process.

Anti-inflammatory Effects of Abeliophyllum distichurn Flower Extract

  • Lee, Jin Wook;Kang, Yoon Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.89-89
    • /
    • 2018
  • Abeliophyllum distichum is a medicinal plant used in regional traditional medicine to relieve pain in inflammatory processes. In this study, anti-inflammatory effects of Abeliophyllum distichum stem (ADS) ethyl acetate extract were examined. Furthermore, possible molecular mechanisms of the anti-inflammatory effects were dissected. The anti-inflammatory activity was investigated by inhibition of lipopolysaccharide (LPS) induced pro-inflammatory cytokine production in murine macrophage-like cell line Raw264.7 cells and human microglial cell line BV2 cells. The measurement of the induced pro-inflammatory cytokine levels were carried out by ELISA. The phosphorylation of ERK1/2, JNK, and MAPK, and the nuclear expression of nuclear factor $NF-{\kappa}B$ p65 were investigated by Western blot analysis. The extract of ADS significantly decreased the production of pro-inflammatory cytokines. In addition, the extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of $NF-{\kappa}B$ p65 in activated cells. Our findings provide evidence for the popular use of Abeliophylli distichum in inflammation around Goesan region and also suggest that the stem extract has potential therapeutic benefits against several inflammatory diseases.

  • PDF

Flavonoid and Skin Inflammation

  • Kim, Hyun-Pyo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.67-73
    • /
    • 2007
  • There have been various inflammatory skin disorders in humans including atopic dermatitis, eczema and psoriasis. Although some drugs have been used for these disorders, there is an urgent need for safer and more effective topical anti-inflammatory agents. Plant flavonoids possess anti-inflammatory activity and some of them have multiple pharmacological mechanisms, inhibition of eicosanoid metabolizing enzymes, histamine release and/or down-regulation of pro inflammatory gene expression. These properties of flavonoids may be suitable for treating chronic skin inflammatory disorders. Especially, wogonin, some prenylated flavonoids and biflavonoids have a strong potential as new anti-inflammatory agents by topical application.

  • PDF

Hyper-inflammatory responses in COVID-19 and anti-inflammatory therapeutic approaches

  • Choi, Hojun;Shin, Eui-Cheol
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.11-19
    • /
    • 2022
  • The coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe COVID-19 exhibit hyper-inflammatory responses characterized by excessive activation of myeloid cells, including monocytes, macrophages, and neutrophils, and a plethora of pro-inflammatory cytokines and chemokines. Accumulating evidence also indicates that hyper-inflammation is a driving factor for severe progression of the disease, which has prompted the development of anti-inflammatory therapies for the treatment of patients with COVID-19. Corticosteroids, IL-6R inhibitors, and JAK inhibitors have demonstrated promising results in treating patients with severe disease. In addition, diverse forms of exosomes that exert anti-inflammatory functions have been tested experimentally for the treatment of COVID-19. Here, we briefly describe the immunological mechanisms of the hyper-inflammatory responses in patients with severe COVID-19. We also summarize current anti-inflammatory therapies for the treatment of severe COVID-19 and novel exosome-based therapeutics that are in experimental stages.

Anti-inflammation, Anti-Development and Curative Effects of Oyaksunki sangamibang on the Collagen-Induced Arthritis in Rats (오약순기산가미방의 항염작용과 Collagen 유발 관절염의 발생억제 및 치료효과)

  • Lee Chan-Bum;Oh Min-Suck
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.176-187
    • /
    • 2005
  • Objectives : This study was carried out to investigate the anti-inflammation, anti-development and curative effects of Oyaksunki-sangamibang (OSKM) on collagen-induced arthritis in Wistar rats and ICR mice. Materials & Methods : D experiment part II, the inhibitory effects of nitric oxide synthesis, pro-inflammatory cytokines, and cyclooxygenase were studied. In experiment part II, paw eduma volume and thickness of ankle joint were measured at 0, 10, 15, and 20 days after immunization. The incidence and arthritis score were evaluated 14 days after immunization, At 15 days after immunization, serum $TNF-\alpha$ was analyzed. In experiment part III paw edema volume and thickness of ankle joint were measured at 0, 10, and 15days after treatment. At 15 days after treatment, serum $TNF-\alpha$ was analyzed. Results : In experiment part I: 1. Nitric oxide synthesis ·md pro-inflammatory cytokines were inhibited significantly by OSKM extract. 2. Cyclooxygenase 2 (COX-2) was inhibited by OSKM extract. In experiment part II: Paw edema volume, thickness of ankle joint and serum $TNF-\alpha$ level of the teated group were significantly decreased compared with the control group at 20 days after immunization. In experiment part III: Incidence of arthritis was $70\%$. OSKM-treated group had no significant change on paw edema volume, thickness of ankle joint and serum $TNF-\alpha$ level. Conclusions : These results indicated that OSKM has anti-inflammation effects on the ICR mouse, and higher inhibitory effects on the onset but lower inhibitory effects on the progression of collagen-induced arthritis in rats.

  • PDF

Effects of solvents on the anti-aging activity of Salvia miltiorrhiza extract (추출용매에 따른 단삼 추출물의 항노화 활성)

  • Guo, nan;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.290-297
    • /
    • 2022
  • This study was conducted to determine the cell cytotoxicity, astringency, nitrite oxide scavenging, iNOS protein expression level, pro-inflammatory cytokine, elastase inhibition, and type I pro-collagen synthesis as a functional cosmetics material of Salvia miltiorrhiza root. We prepared the 80% ethanol(SE) and hot-distilled water(SW), respectively. Both SE and SW showed no toxicity from 0.05 to 0.5 mg/mL concentration as a result of MTT assay in NHDF or RAW264.7 cells. In the measurement of astringent effect, SE reveled 74.6% of astringent activity in 10 mg/mL. SE showed that LPS-induced nitric oxide production, iNOS protein expression, and cytokines were inhibited in a dose-dependent manner. Furthermore, two extracts significantly inhibited elastase activity and increased the type I pro-collagen production. Therefore, it is expected that Salvia miltiorrhiza extract is used as a natural material for functional cosmetics that can effectively prevent skin-related inflammation and wrinkles, and aging.