• Title/Summary/Keyword: Prior parameter

Search Result 343, Processing Time 0.024 seconds

Noninformative priors for the scale parameter in the generalized Pareto distribution

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1521-1529
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the scale parameter is of interest. We developed the rst order and the second order matching priors. We revealed that the second order matching prior does not exist. It turns out that the reference prior and Jeffrey's prior do not satisfy a first order matching criterion, and Jeffreys' prior, the reference prior and the matching prior are different. Some simulation study is performed and a real example is given.

Noninformative priors for Pareto distribution

  • Kim, Dal-Ho;Kang, Sang-Gil;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1213-1223
    • /
    • 2009
  • In this paper, we develop noninformative priors for two parameter Pareto distribution. Specially, we derive Jereys' prior, probability matching prior and reference prior for the parameter of interest. In our case, the probability matching prior is only a first order matching prior and there does not exist a second order matching prior. Some simulation reveals that the matching prior performs better to achieve the coverage probability. A real example is also considered.

  • PDF

Noninformative priors for the common shape parameter of several inverse Gaussian distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.243-253
    • /
    • 2015
  • In this paper, we develop the noninformative priors for the common shape parameter of several inverse Gaussian distributions. Specially, we want to develop noninformative priors which satisfy certain objective criterion. The probability matching priors and reference priors of the common shape parameter will be developed. It turns out that the second order matching prior does not exist. The reference priors satisfy the first order matching criterion, but Jeffrey's prior is not the first order matching prior. We showed that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative priors for the shape parameter in the generalized Pareto distribution

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.171-178
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the parameter of interest is the shape parameter. We developed the first order and the second order matching priors.We revealed that the second order matching prior does not exist. It turns out that the reference prior satisfies a first order matching criterion, but Jeffrey's prior is not a first order matching prior. Some simulation study is performed and a real example is given.

Reference Priors for the Location Parameter in the Exponential Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1409-1418
    • /
    • 2008
  • In this paper, we develop the reference priors for the common location parameter in two parameter exponential distributions. We derive the reference priors and prove the propriety of joint posterior distribution under the general prior including the reference priors. Through the simulation study, we show that the proposed reference prior matches the target coverage probabilities in a frequentist sense.

  • PDF

NONINFORMATIVE PRIORS FOR PARETO DISTRIBUTION : REGULAR CASE

  • Kim, Dal-Ho;Lee, Woo-Dong;Kang, Sang-Gil
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.27-37
    • /
    • 2003
  • In this paper, we develop noninformative priors for two parameter Pareto distribution. Specially, we derive Jeffrey's prior, probability matching prior and reference prior for the parameter of interest. In our case, the probability matching prior is only a first order and there does not exist a second order matching prior. Some simulation reveals that the matching prior performs better to achieve the coverage probability. And a real example will be given.

  • PDF

Noninformative Priors for the Common Shape Parameter in the Gamma Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.247-257
    • /
    • 2007
  • In this paper, we develop the noninformative priors for the common shape parameter in the gamma distributions. We develop the matching priors and reveal that the second order matching prior does not exist. It turns out that the one-at-a-time reference prior and the two group reference prior satisfy a first order probability matching criterion. Some simulation study is peformed.

  • PDF

Noninformative Priors for the Common Scale Parameter in the Inverse Gaussian Distributions

  • Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.981-992
    • /
    • 2004
  • In this paper, we develop the noninformative priors for the common scale parameter in the inverse gaussian distributions. We developed the first and second order matching priors. Next we revealed that the second order matching prior satisfies a HPD matching criterion. Also we showed that the second order matching prior matches alternative coverage probabilities up to the second order. It turns out that the one-at-a-time reference prior satisfies a second order matching criterion. Some simulation study is performed.

  • PDF

Noninformative priors for the reliability function of two-parameter exponential distribution

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.361-369
    • /
    • 2011
  • In this paper, we develop the reference and the matching priors for the reliability function of two-parameter exponential distribution. We derive the reference priors and the matching prior, and prove the propriety of joint posterior distribution under the general prior including the reference priors and the matching prior. Through the sim-ulation study, we show that the proposed reference priors match the target coverage probabilities in a frequentist sense.

A Study of Parameter Estimation with the Prior-Information by Using the Multiple Stratification (사전정보가 있는 경우 다중층화를 이용한 모수추정연구)

  • 이해용
    • Journal of Applied Reliability
    • /
    • v.3 no.2
    • /
    • pp.117-125
    • /
    • 2003
  • In sampling survey, prior-information about population has been generally ignored to estimate parameters. But if there is some believable prior-information about population, it is very useful to get more efficiency estimators by using the prior-information. This paper shows how to estimate the parameter, to evaluate the variance of the estimator, and to un-biasness of the estimator by using multiple stratification with prior-information about survey population. The proposed method is illustrated with a set of hypothetical data. The results show that the proposed estimator is very efficiency and strongly recommendable.

  • PDF